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Understanding and engineering complex biomolecular networks in the cell are the goals of 

systems and synthetic biology.  The effects of localization, spatial heterogeneity and 

molecular noise in biomolecular networks are not well understood.  In this research, a 

theoretical approach to accurately simulate large biomolecular networks using the Monte 

Carlo method was introduced.  Incorporating this theory, a computational tool named Monte 

Carlo Biomolecular Simulator (MBS) was developed, enabling studies of biomolecular 

kinetics with both spatial and temporal resolutions.  The accuracy of MBS was verified by 

comparison against the classical deterministic approach.  Furthermore, the effects of 

localization, spatial heterogeneity and molecular noise were studied in three simulated 

systems, showing their huge impact on the overall reaction kinetics.  Lastly, the MBS was 

used as an engineering tool to create and fine-tune a synthetic protein network analogous to a 

D-latch memory unit commonly used in electrical circuits. 
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1.1 Motivation and background 

Cells are complex biological systems made of networks of biomolecular reactions.  The study 

of the kinetic behaviour of these networks is crucial to understanding the intricacies of their 

resulting cellular behaviours, which is the goal of the emerging new field of systems biology.  

Most biomolecular studies to date have focused on the interactions and reaction mechanisms 

among a small number of proteins and other biomolecules such as nucleotides, metabolites 

and ions.  This pioneering work has provided the foundation to study larger and more 

sophisticated biomolecular reaction networks in the cell.  These networks have distinct 

characteristics.  First, biomolecules in the cell such as proteins, DNA, ions and metabolites 

are spatially organized into compartments or anchored to membranes.  It is still largely 

unknown how the localization of these molecules provides signaling, control and functional 

advantages to the cell.  Second, many biomolecular reactions such as the Ca2+ wave and the 

action potential involve both temporal and spatial kinetics.  Thus, a molecular concentration 

profile in time and space is critical for studying these networks.  Lastly, restricted by the size 

and organization of the cell, the population of certain molecular species such as protein 

coding DNA could be as low as single digits.  Reactions involving low copy number species 

have large statistical fluctuation in activities, the behavior of which is important to the 

stability and variability to the protein network.  Again, it is still largely unknown how this 

impacts cellular behaviour.  Therefore, being able to simulate all the above aspects of 

biomolecular reactions is crucial for understanding their resulting cellular behaviours. 
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Beyond understanding, the ultimate goal is to be able to modify and control biological 

systems.  This is where synthetic biology emerges, which strives to build increasingly 

complex biological networks through the integration of molecular biology and engineering.  

The growth of the field has been supported by progress in the design and construction of 

synthetic genetic and protein networks.  This has led to the possibility of assembling modular 

components to attain novel biological functions and tools.  In addition, these synthetic 

networks give rise to insights that facilitate the investigation of interactions and phenomena 

in naturally-occurring networks.  Integration of well-characterized biological components 

into higher order networks requires computational modeling approaches to rationally 

construct systems that are directed towards a desired outcome.  A computational approach 

would improve the predictability of the underlying mechanisms that would otherwise be 

difficult to deduce through experimentation alone.  The analysis and interpretation of 

quantitative models becomes increasingly important towards taking a systems-level 

perspective on synthetic genetic and protein networks. 

 

There are in general two classes of approaches to simulate biomolecular reactions: 

deterministic and stochastic.  The most common deterministic approach to study 

biomolecular kinetics is by ordinary differential equations (ODE), which usually assumes 

homogeneous concentration for all biomolecular species within the reaction volume.  

Therefore, ODE would not provide the desired spatial resolution.  One could obtain spatial 

information by applying a system of second order partial differential equations (PDE).  

However, deriving and solving a large system of equations needed for spatial resolution 

becomes more challenging as the number of interactions increases, often requiring many 
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approximations.  Furthermore, the effect of molecular fluctuation for low copy number 

molecular species cannot be easily handled by a deterministic model.  To resolve these 

problems, we created a computational tool named MBS (Monte Carlo Biomolecular Reaction 

Simulator) that used a stochastic model to simulate the motion and reaction of each molecule 

in user-defined spaces.  Although a few similar attempts have been made recently to simulate 

signaling pathways and biomolecular oscillations, the models used in these studies adopted 

convenient but crude approximations of physical principles such as the handling of single 

molecule diffusion and reaction probability.  Thus, using the same physical approximations, 

we could not produce simple diffusion and reaction constants.  Consequently, in our 

computational tool (MBS), we developed a set of physically realistic models to represent the 

molecular diffusion and reaction processes.  

 

1.2 Key objectives 

The key objectives of this research are: 

• Develop a theory to accurately represent molecular diffusion and chemical reactions 

using Monte Carlo method. 

• Develop a software package incorporating the theory for studying biomolecular 

networks that provides both temporal and spatial kinetics information. 

• Verify the theory and test the software by comparing simulation results with 

deterministic results under known conditions. 

• Demonstrate the important effects of molecular localization, spatial heterogeneity and 

molecular fluctuation to overall chemical kinetics. 

• Design a synthetic protein network behaving like a digital circuit. 
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1.3 Organization 

The remaining chapters of this thesis are organized as follows: 

• Chapter 2 provides a literature survey on biological systems modeling, showing what 

has been done and why this research is needed. 

• Chapter 3 introduces the theory and method to describe diffusion and chemical 

kinetics in Monte Carlo simulations, forming the basis for the software 

development. 

• Chapter 4 provides details on the architecture and implementation of the MBS 

software, where the technical difficulties and solutions are addressed. 

• Chapter 5 presents simulations using MBS including the verification of its validity 

and demonstration.  Models showing the effect of spatial heterogeneity, 

molecular localization and fluctuation were constructed.  A chemical 

memory unit was designed using protein network that behave like a latch 

in electric circuit.  The design was realistic and could be created using 

protein engineering. 

• Chapter 6 summaries the thesis and discusses the future direction of this research. 
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Chapter 2  

 

Literature research 

 

 

 

 

 

 

 

 

The content of this chapter was modified from the peer-review journal paper:  

E. Pham, I. T. S. Li, and K. Truong, "Computational Modeling Approaches for Studying of 

Synthetic Biological Networks," Current Bioinformatics (submitted), 2007. 
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2.1 Introduction 

Systems biology aims at understanding systems as a whole by studying the interactions 

between the components of biological networks.  One goal of systems biology is to provide 

an in-depth comprehensive body of knowledge of the interactions and kinetics governing 

biological systems at the molecular level.  Synthetic biology encompasses an engineering-

based approach to designing biological networks.  It shares the holistic perspective of 

systems biology, as its ultimate goal is to construct de novo networks of high complexity and 

interconnectivity.  Progress in synthetic biology will address fundamental principles of 

biological interactions, as well as lead to practical applications in drug discovery and 

biotechnology.  In order to move towards a higher-order, systems-level perspective, it is 

necessary to examine the composition, structure, and kinetics of cellular networks, rather 

than the characteristics of the isolated parts alone.   

 

An important post-genomic research area is the analysis and elucidation of the dynamic 

interactions of genes and proteins in naturally occurring systems.  Linkages between the 

molecular and system levels were recently made possible by advances in functional genomics 

and proteomics.  The current drive is to analyze systems in terms of their responses to 

perturbations and to uncover network features such as robustness and degeneracy.   

 

Molecular characteristics of biological interactions have been identified and categorized into 

specific functional modules.  A systematic means of piecing together different modules to 

progressively build more complex networks will not only lead to a systems-level 
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understanding, but also reveal the underlying kinetics governing how the individual modules 

interact and respond to each other.  This results in a more continuous stream of knowledge, 

from molecular to systems descriptions.  Not only is there a gap in our understanding and 

knowledge of all biological phenomena, even for biological systems in which all the 

components are known, it is still unclear precisely how these components interact to make 

cellular processes work.  The vast amount of biological data from molecular biology has 

revealed many sequences and properties of genes and proteins, but is not sufficient for 

interpreting system behaviour. 

 

Recently, computational modeling approaches have been employed to study natural 

biological systems and would be applicable, in fact highly recommended, for synthetic 

networks.  These approaches integrate advances in algorithms and statistics to analyze 

biological data.  Through a combination of both experimental and computational approaches, 

we can gain deeper understanding of the function of biological processes.  Therefore, it is 

worthwhile to look at how computational approaches could be used to complement 

construction and experimentation of synthetic networks. 

 

2.2 Circuit engineering analogy for systems and synthetic biology 

Biological networks are analogous to electrical circuits.  Both circuits and biological systems 

transform information from one form into another based on a set of defined rules.  Stimuli 

function as inputs, while signals modulating the behaviour of the system are processed and 

generated as outputs. 
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Mapping out the components of a biological system and making the connections between 

interacting components is analogous to drawing a circuit diagram.  In order to deduce the 

mechanisms controlling these biological circuits, a parts list needs to be generated and the 

transformation between input and output needs to be established.  While the former has been 

successful through genomic sequencing and protein studies, the latter requires more rigorous 

analysis.  Building a circuit to perform a particular function is much easier than deducing the 

function of an existing black-box circuit solely through correlating its outputs with its inputs. 

Circuit control theory has been used to develop a theoretical understanding of an adaptation 

mechanism through negative feedback [14, 15].  However, this approach has limitations as 

control theory assumes that inputs are provided to the system, but in biology, such inputs or 

stimuli are often created and refined continuously within the system itself.  In another study, 

an integrative modeling approach was used to run a circuit simulation of the lysis-lysogeny 

decision circuit of bacteriophage lambda, making use of the parallels between genetic and 

electrical circuits [16].  Similarly, other frameworks integrating control theory and biological 

control processes have been proposed to describe genetic regulatory networks and adaptation 

in bacterial chemotaxis [15, 17].  These function well as system descriptions, drawing 

parallels between biological processes with more established control theory.  While such an 

analogy allows for a framework in which to systematically identify and analyze synthetic 

biological networks, it does not address the need to computationally study these networks for 

a more quantitative perspective.  However, even for well-studied systems, no set of defined 

equations or approximations correspond exactly to how that system behaves.  In many cases, 

even the smaller components making up a biological system are still under study.  Hence, 
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there is still much characterization on the biological level to be done before a systematic 

characterization and understanding of the real biological networks can be understood. 

 

2.3 Computation in synthetic biology 

Although simulations at the systems biology level is currently limited, synthetic biology may 

lend insights to explain phenomena observed in real biological systems.  The rational 

construction and analysis of synthetic networks provides a framework for computational 

modeling studies.  The construction of useful and predictive synthetic networks allows the 

direct prediction and measurement of model parameters.  As both the complexity and design 

of the networks are under control of the designer, there are fewer ambiguities and 

uncertainties.  As well, there is a firmer foundation upon which more complex networks can 

be built. 

 

2.3.1 Elucidating natural biological network kinetics 

The design of synthetic networks allows chosen subnetworks of natural biological systems to 

be isolated.  Modeling and experimental studies can be focused first on understanding the 

isolated subsystem before progressively increasing complexity.  Accurate models of 

synthetic networks provide fundamental insights and act as a foundation with which to 

describe natural biological networks, including genetic regulatory networks and protein 

signalling pathways.  The ultimate goal of synthetic biology is to construct increasingly 

complex networks, concomitantly assembling increasingly more complete models of natural 

systems.  The advantage of this approach is that at each stage, subsystems have been 
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characterized by modeling and experimentation, thus keeping the number of unknowns at a 

minimum.  Practically, this approach reduces the degree of trial-and-error experimentation 

required for the understanding of complex biological networks.  Once the structures of 

synthetic networks are mapped out and their functional dynamic properties are understood, 

an ever-growing library of circuits will facilitate the classification and comparison of 

subsequent circuits to provide yet more insights into the complexity of natural biological 

systems.  Synthetic biology allows the study of natural regulatory networks and cellular 

behaviours using de novo networks, potentially leading to future applications in 

biotechnology and medicine.   

 

Undoubtedly, signalling networks are complex and highly interconnected, interacting at 

several levels to regulate biological functions within cells [18].  Synthetic genetic regulatory 

systems mimicking those of mammalian cells have led to the potential of designing 

mammalian cells with desired properties for tissue engineering, gene therapy, and 

biopharmaceutics [19].  Furthermore, many diseases result from malfunctioning of natural 

biological networks including both signalling pathways and transcriptional regulation.  In 

diseases like cancer, single abnormalities in signalling pathways do not lead to complications, 

but the combined effect of multiple abnormalities to several key pathways result in 

substantial consequences.  Understanding how individual components function within the 

context of a larger, complex signalling network provides a molecular view of which 

interactions are involved in causing the diseased state. 
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2.3.2 Synthetic networks constructed 

Using the analogy of logic flow from circuit engineering, both genetic-based and protein-

based synthetic networks have been designed and tested [20].  A library of networks with 

novel connectivities between transcriptional regulators and the corresponding promoters was 

previously developed for combinatorial synthesis of biological networks of varying levels of 

complexity [20].  Examples of synthetically engineered gene circuits include autoregulatory 

systems displaying stability through negative feedback, toggle switches, logic gates, and 

repressilators [21-23]. (Figure 2-1A, B, C)  Similarly, engineered protein circuits have been 

constructed to function as Boolean logic gates of AND, OR, and NOT [24, 25].  (Figure 2-1D, 

E, F) 
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Figure 2-1: Examples of synthetic genetic and protein circuits.  A. a negative-feedback circuit consisting 

of a single gene: the promoter drives the transcription of the target gene and a gene coding for a 

repressor, the expression of which regulates its own promoter through inhibition. B. a toggle switch: 

promoter 1 drives the expression of repressor 2, which inhibits the transcription of the target gene by 

blocking promoter 2; this second promoter drives the expression of the target gene and repressor 1, 

which inhibits the transcription of promoter 1, in effect activating the transcription of the target gene; in 

the presence of inducers, inhibition effects can be blocked, further regulating the expression of the target 

gene. C. an oscillator circuit: promoter 1 drives the expression of repressor 3, which blocks promoter 3; 

promoter 3 drives the expression of repressor 2, inhibiting the promoter 2 responsible for driving the 

expression of repressor1 to block the transcription of promoter 1.  D. an AND gate: the protein (white) is 
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active only in the presence of both input proteins. E. an OR gate: the protein is active when one or both 

input proteins are present. F. a NOT gate: the protein is no longer active in the presence of an input 

protein. 

 

It has been suggested that biology is moving towards a more modular perspective of 

analyzing how those proteins and genes interact to produce a higher function [26].  Cellular 

behaviour is carried out and regulated by ‘modules’ made up of many species of interacting 

biomolecules to perform specific functions.  These modules can be classified by function, 

such as genetic switches, flip-flops, logic gates, amplifiers and oscillators; or by ‘network 

motifs’ to represent interconnections that are more commonly found, such as feed-forward 

loops, single-input modules (SIM), and dense overlapping regulons (DOR) [27]. General 

principles and mechanisms governing the behaviour of modules can be elucidated through 

studies of synthetic networks.   

 

Looking only at modular components of biological networks is still insufficient for 

understanding the system itself.  To head towards a systems-level analysis, computational 

modeling approaches become even more important.  Reductionism has been a dominant 

approach to studying biology, reducing a system into the components and attempting to re-

connect those components through assumptions and approximations.  However, a larger issue 

that cannot be addressed by reductionism is the lack in understanding of the dynamic and 

nonlinear behaviour of the systems, which can only be obtained by taking a holistic approach.  

Based on in silico prediction and optimization from computational models, more complex 

circuits can be rationally assembled from subnetworks.  These larger circuits can then be 

used for further experimental study and implementation. 
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Many attempts thus far have focused on mapping and causally modeling the different 

components of biological networks.  Hypotheses are then proposed to describe the system 

behaviour.  Using the Boolean network model, on and off states have been used to describe 

the state of genes and proteins in a circuit [28, 29].  While a qualitative model may suggest 

general system behaviour, important quantitative details that dominate system behaviours 

may be left out, as limited by our understanding of and power to predict complex systems.   

 

2.3.3 Applications of synthetic biology 

Besides assembling synthetic networks to help advance systems biology, these networks can 

be used to monitor and control cellular behaviours.  This includes using synthetic networks 

as biosensors in a natural biological system.  It may be possible to supplement or replace an 

existing biological function in diseased cells, including the re-engineering of viral regulatory 

networks in the development of oncolytic viral vectors to target cancer cells [30, 31].  The 

kinetics of an assembled network can be tweaked for particular purposes based on 

computational modeling predictions, which is easier with synthetic networks than natural 

ones.  Detailed models of synthetic systems will provide insights into drug discovery, such as 

revealing the effects of feedback mechanisms that may offset the effective dose of drugs [32].   

 

Synthetic biology is also related to molecular computation research, where biological 

molecules can act as analogues of silicon-based integrated circuits.  Computation with 

biological molecules has begun to surface in literature, such as molecular-based logic 

circuitry [33].  Modular synthetic networks can function as logic gates, and the combination 
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of these logic gates into higher complexity systems will feed into the study of computational 

devices relying on proteins and their interactions [25, 34].  From the construction and 

characterization of simpler elements such as switches and logic gates, it is possible to build 

more elaborate devices to perform higher-level functions such as memory devices as will be 

explored in this thesis. 

 

2.4 Quantitative computational modeling approaches 

From the above examples and applications, it is evident that quantitative simulations will be 

tremendously useful in both systems and synthetic biology.  Conventional methods of 

creating network models involve performing a series of experiments, identifying specific 

interactions, conducting extensive literature research for confirmation, and repeating.  

Several methods are available to reveal regulatory relationships based solely on mRNA 

expression data from microarray studies.  However, the many mechanisms occurring in a 

single system including post-transcriptional and post-translational modifications cannot be 

incorporated all at once on a microarray without losing precision and accuracy.  A more 

reliable means of incorporating many different mechanisms that occur simultaneously in a 

system is by in silico simulations and modeling.   

 

Simulations predict the kinetics of systems, incorporating assumptions and approximations to 

complete the models.  They are generally based on statistical considerations, the validity of 

which can be tested experimentally.  Simulations often require the integration of multiple 

hierarchies of models that span several orders of magnitude in terms of scale, abundance, 

binding affinities, and rate constants [35].  Advances in software and computational power 
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has allowed for more realistic, complex biological models including those for bifurcation of 

the cell cycle, metabolic analysis, and oscillatory circuits [36-39]. (Table 2-1)  However, the 

choice of what can be modeled is still limited by the availability of biological knowledge. 

 

Table 2-1: Software tools developed for the modeling and simulation of biological interactions 

Tools Description Source 
BioJake Visualization tool for the manipulation of metabolic 

pathways 
 

[40] 

BioSPICE Software system for access to current computational 
tools 
 

[41, 42] 

CellDesigner Software for diagrammatic editing of biological 
networks 
 

[43] 

CellWare Integrative multi-algorithmic simulation tool for 
deterministic and stochastic cellular events 
 

[44, 45] 

COPASI Platform-independent tool for the simulation of 
biochemical events 
 

[46] 

Dizzy Software tool for modeling integrated large-scale 
networks deterministically and stochastically 
 

[47] 

Dynetica Simulation tool for studying kinetic models of 
dynamic networks 
 

[48] 

E-CELL Software environment for simulation of integrative 
models of cellular behaviour 
 

[49] 

Gepasi Software system for modeling chemical and 
biochemical reaction networks 
 

[50-52] 

Pathway Tools Software environment for creating model-organism 
databases 
 

[53] 

StochSim Stochastic simulation tool for chemical reactions 
 

[54] 

STOCKS Stochastic kinetic simulation tool for biochemical 
processes 
 

[55] 
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Systems Biology 
Workbench 

(SBW) 

Software framework for communication between 
software applications 
 

[56] 

Virtual Cell Computational framework for modeling and testing 
biological networks 
 

[57, 58] 

 

 

Previous studies based on quantitative models have mainly been on small and simple 

networks.  The reasons for this restriction are a lack of complete quantitative data to input as 

parameters, only partial characterization of the networks by experimental studies, and 

expensive computational complexity required to simulate network behaviours.  However, the 

future for quantitative approaches appears promising as better experimental procedures, 

including high-throughput, large-scale techniques such as microarray and mass spectrometry 

are developed [59, 60].  Databases are also being developed to collect shared, published 

experimental parameter data [61]. (Table 2-2) 

 
Table 2-2: Databases developed to store, categorize, and share data from biological studies and modeling 

Database Description Source 
Alliance for Cellular 

Signaling (AfCS) 
Collection of databases and tools to study signaling 
processes 
 

[62] 

BioModels Database of published, peer-reviewed, quantitative 
models of biochemical and cellular networks 
 

[63] 

BioSilico Integrated web-based database system for 
metabolic pathways 
 

[64] 

BRENDA Information system on enzyme properties and 
functions 
 

[65] 

EcoCyc Pathway database describing biological networks 
of E. coli 
 

[66] 
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ENZYME Repository for enzyme nomenclature 
 

[67] 

Kyoto Encyclopedia of 
Genes and Genomes 

(KEGG) 

Knowledge database system for analysis of gene 
functions and pathways; includes the databases:  
GENES, PATHWAY, and LIGAND 
 

[68] 

MetaCyc Database describing metabolic pathways in model 
organisms 
 

[69] 

ERGO (WIT) Database system for comparative analysis of 
sequenced genomes and metabolic reconstructions 
 

[70] 

 

 

2.4.1 Deterministic chemical kinetics approach 

Chemical kinetics represent how concentrations of each molecular species evolve in time.  

The interactions between molecular species are written in chemical reactions with specific 

rate constants and equilibrium constants.  A set of chemical reactions can be represented by 

differential equations involving their reaction rates.  The concentration changes over time of 

the molecular species are solved in order to produce a system transition path.  A deterministic 

approach assumes a predictable process governed by the set of differential equations and the 

initial conditions [71].  Networks representing bacterial chemotaxis and bacteriophage 

infections have been modeled using this chemical kinetics approach and have been verified 

experimentally  [16, 27, 72-74]. 

 

Depending on the amount of prior knowledge, many approximations are incorporated into 

deterministic models such as the vast amount of kinetic rates and binding affinities.  Models 

incorporating assumed kinetic rates are useful for approximating system behaviour and 

function even though exact kinetic rates are not readily available.  In other cases, relative 
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kinetic rates have been used to approximate system behaviour.  Since exact kinetic rates of 

the components were unknown, randomly chosen kinetic rates were assigned to different 

components and a large number of computational models were generated [75].  

Experimentation was then used to fit the predicted data.  Employing this brute force approach, 

one group followed the time courses of major cyclin-dependent kinase activities in budding 

yeast cell cycles [76].  Quantitative simulations were then required to predict relevant 

parameters. 

 

2.4.2 Stochastic kinetics approach 

While some biological processes can be modeled using simple chemical kinetics and 

deterministic approaches, many are more realistically represented by random events, in 

which case stochastic considerations are used instead of specifying differential equations.  To 

capture probabilistic fluctuations in gene expression and genetic regulatory networks such as 

that in the lysis-lysogeny decision circuit of bacteriophage lambda, stochastic approaches 

provided more accurate representations [77-79].  Stochastic models can also be used to 

deduce the effects of noise within a synthetic network, potentially leading to the 

manipulation of the network itself in order to improve the signal-to-noise ratio within these 

networks [80, 81]. 

 

A stochastic approach regards changes over time as random and unpredictable processes, 

with no set of differential equations defined, and takes into account inherent fluctuations that 

are not considered in the deterministic kinetic approach.  Stochastic effects are significant in 

some biological systems with small molecular populations involved.  Although stochastic 
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processes build more accurate models, they are difficult to solve analytically.  However, 

numerical simulations are possible using Monte Carlo principles [71, 82, 83].  Instead of 

considering reaction parameters as reaction rates, they are treated as reaction probabilities.  A 

software called STOCKS (STOChastic Kinetic Simulations) was developed to run Monte 

Carlo simulations of biochemical processes such as the binding of transcriptional regulators 

using a stochastic simulation algorithm [55]. 

 

Simulations using stochastic considerations have been reported for biological systems 

involving genetic and enzymatic reactions between molecular populations that were 

relatively small, including synthetic oscillatory networks, transcriptional regulation, and 

circadian rhythms [23, 84-86].  For large populations of molecular species, the predictions 

obtained from stochastic approaches match with deterministic ones.  However, at smaller 

population sizes, stochastic effects become more dominant, in which case, deterministic 

approaches become insufficient [77, 87, 88].  Unfortunately, for many biological networks, 

stochastic simulations are still computationally expensive due to the huge differences in 

timescales of biological interactions and population sizes.  Various improvements, 

approximations, and hybrid approaches have been presented [89-95].  In one such study, 

stochastic simulations were done on multi-scaled systems to study reactions occurring in 

three different regimes (slow, medium, and fast) as well as coupled reactions.  The presented 

approach showed substantial improvement over using the basic stochastic simulation 

approach when applied to the study of expression and activity of Lac proteins in E. coli [96].  

In another, a simple genetic circuit was modeled and simulated using a modified Gillespie 

algorithm with a quasi-steady-state assumption.  This assumption was shown to greatly 
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simplify the stochastic model and to significantly reduce the computational complexity 

required, speeding up the algorithm [89].  

 

Despite providing a more complete representation of biological networks, current stochastic 

approaches still face the challenge of dealing with several orders of magnitude in terms of 

scale and properties including binding affinities, specificities, and kinetic rates.  In addition, 

very few of the existing stochastic methods deal with system behaviours with a spatial 

resolution.  The majority of the simulations simplify their models by assuming spatial 

homogeneity for the molecular species.  In addition, the models for molecular motion as well 

as reactions are not built upon physical principles, which may introduce artifacts to the 

simulation results.  Hence, a new stochastic theory that can address the scalability and 

physically realistic is needed to accurately represent biochemical reaction networks. 

 

2.5 Summary 

Systems biology strives to understand the complex networks of biomolecular interactions in 

the cell.  However, even with the existing amount of genomics and proteomics data, most of 

the parameters are still unknown about the networks in the cell.  This makes it only possible 

to simulate and study small systems, and difficult to gain a system-level perspective of 

biological complexity.  Hence, synthetic biology is introduced as an important tool to provide 

insight into natural systems by building simpler networks with well-characterized 

interactions in order to examine the effect of different parameters.  However, the inherent 

complexity of biological networks requires the aid of computational modeling approaches to 

complement experimentation to provide a more complete perspective.  Thus, to benefit from 
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the full potential of synthetic networks, significant advancement in quantitative 

computational modeling are required to attain a better representation of biological systems.  

Among quantitative modelling, deterministic approaches use differential equations to model 

systems that may be accurate for some, but inadequate for others as they lose important 

kinetics details such as molecular fluctuation and spatial distribution.  Hence, stochastic 

approaches that provide a more complete representation of the system are desirable.  

However, current stochastic methods lack the description of spatial distribution of molecules 

as well as a sound physical model for the motion and chemical kinetics of the molecules.  

This research here seeks to bridge this gap. 
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Chapter 3  

 

Theory development 
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3.1 Introduction 

In this chapter, a method to accurately represent chemical reaction using Monte Carlo 

method is presented.  Two issues must be addressed correctly: the motion of each molecule 

and the reaction kinetics of each molecule.  Microscopically, the motion of each molecule is 

Brownian, a type of random walking motion.  Macroscopically, the motion of an ensemble of 

molecules is described by diffusion theory.  These two theories describe the same 

phenomenon at different levels.  However, our Monte Carlo simulation is meant to work with 

microscopic individual molecules, while most experimentally measured diffusion parameters 

describe the macroscopic ensemble.  A theory must be developed to bridge the two realms 

such that Monte Carlo simulation is able to reproduce the effects seen on macroscopic scales.   

 

Chemical reactions can be divided into two types: reactions with only one reagent molecule 

and reactions involving more than one reagent molecules.  Reactions involving one reagent 

molecules are defined here as dissociation reactions, such as: 

1 2 3 ...dkA B B B⎯⎯→ + + +  

Reactions involving multiple reagent molecules are defined here as association reactions. 

These chemical reactions are caused by molecular collisions from a microscopic perspective.  

However, no three physically objects can collide at exactly the same time instance.  It is, 

therefore, sufficient to describe all molecular collisions as collisions between only two 

molecules.  This implies that any association reactions can be broken down as a combination 

of one or more association reactions with only two reagents.  For instance, a reaction: 

A B C D+ + ⎯⎯→  
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can be rewritten as a combination of: 

          

          

          

AB AB

BC BC

CA CA

A B I I C D

B C I I A D

C A I I B D

+ ⎯⎯→ + ⎯⎯→

+ ⎯⎯→ + ⎯⎯→

+ ⎯⎯→ + ⎯⎯→

 

where IAB, IBC and ICA are reaction intermediates, which may be an even more accurate 

description of the physical reality of the original reaction.  Hence, this chapter will only deal 

with association reactions with two reagent molecules and one product molecule: 

akA B C+ ⎯⎯→  

Both dissociation and association reactions are described macroscopically by rate constants 

kd and ka, respectively.  However, microscopically, each molecule must decide which other 

molecules to react with and when to react.  Hence, reaction probabilities for each molecule 

are necessary for Monte Carlo simulation.  The theory in this chapter will also bridge the gap 

between the microscopic reaction probability and macroscopic rate constant. 

 

3.2 Random walk model of diffusion 

A common measurable quantity describing the ensemble motion of molecules is the diffusion 

coefficient D.  However, this diffusion coefficient does not describe the individual random 

walking motion of molecules.  In order to simulate the random walk of each molecule, a 

method is devised here, relating it to the behaviour of macroscopic diffusion.  With this 

theory, the spatial distribution of many individually random walking molecules should 

achieve identical distribution profile as described by macroscopic diffusion equations. 
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Microscopically, the function W describes a microscopic random walk (micro-RW) of a 

molecule by giving the probability density of a molecule walking to a location r (measured 

from the diffusion origin) in N steps of step length s0: 

3 2 2

0 2 2
0 0

3 3( , , ) exp
2 2

rW r N s
Ns Nsπ

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠    (3.1) 

 

Macroscopically, diffusion is described by the diffusion equation: 

( ) ( )2,
,

r t
D r t

t
φ

φ
∂

= ∇
∂

    (3.2) 

where φ is the density distribution of the diffusion species and D is the diffusion coefficient. 

 

Because the micro-RW probability W and the macro-diffusion distribution φ have the same 

shape but only scaled differently, their relationship can be discovered by replacing φ with W 

under the similar operations as in (3.2): 

( )

2 2 2
2

0 02 2 2

2 2 2

02 4 2
0 0

( , , ) ( , , )

9 9 ( , , )

W r N s W r N s
x y z

x y z
W r N s

N s Ns

⎛ ⎞∂ ∂ ∂
∇ = + +⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞+ +
⎜ ⎟= −
⎜ ⎟
⎝ ⎠   (3.3) 

 

In micro-RW, the number of steps N is analogous to time t in macro-diffusion, hence the 

following partial differentiation was performed: 

( )2 2 2
2

0 0 02 4 2
0 0

91 9( , , ) ( , , )
6

x y z
W r N s s W r N s

N N s Ns

⎛ ⎞+ +∂ ⎜ ⎟= −
⎜ ⎟∂ ⎝ ⎠  
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2
20

0 0( , , ) ( , , )
6

sW r N s W r N s
dN
∂

∴ = ∇    (3.4) 

 

We introduce the average time spent for each RW step τrw by: 

rwt Nτ=      (3.5) 

hence, rw
t
N

τ ∂
=
∂

     (3.6) 

Compare (3.4) with (3.2) using (3.6), we get: 

 
0 0

2
20

0

( , , ) ( , , )

( , , )
6 rw

NW r N s W r N s
t t N

s W r N s
τ

∂ ∂ ∂
=

∂ ∂ ∂

= ∇
    (3.7) 

 

Microscopic and macroscopic diffusion behaviour can be related by comparing (3.7) to (3.2), 

giving: 

2
0

6 rw

sD
τ

=      (3.8) 

This turns out to be the 3D version of Einstein diffusion equation.  The Einstein diffusion 

equation for 1D takes the form: 

2
0

2 rw

sD
τ

=      (3.9) 

 

To interpret the physical meanings of the 3D Einstein diffusion equation, suppose v is the 

average velocity during the collision free path, (3.8) can be rewritten as: 

 0

rw

sv
τ

=      (3.10) 
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2 2
0

6 6
rw

rw

s vD τ
τ

= =      (3.11) 

τrw is cancelled out by combining (3.5), (3.10) and (3.11): 

2
0 6Ns Dt=  

With this relation, micro-RW W(r, N, s0) can be rewritten as W(r, t, D): 

 
3 2 21( , , ) exp

4 4
rW r t D

Dt Dtπ
⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
    (3.12) 

W(r, t, D) is the diffusion probability density function (dPDF) of the end positions after a 

random walk using macroscopic parameters time, t and diffusion coefficient D (Figure 3-1).  

The time evolution of the W(r, t, D) is displayed in Figure 3-2. 
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Figure 3-1: The diffusion probability density function.  The x-axis is the radial distance from the origin of 

diffusion.  Plotted with parameter: D=10-10m2/s, t=100ns.  The graph assumes the shapes of a Gaussian 

function.  From this graph, the diffusion can be estimated to be in the order of 10nm, roughly 1% of the 

size of a cell.  
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Figure 3-2: The time-evolution of the diffusion probability density function.  The x-axis is the radial 

distance from the origin of diffusion.  Plotted with parameter D=10-10m2/s, the time ranges from t=0.5s to 

t=5 s at a step of 0.5 s. 

 

The probability of finding the particle in a particular volume V in 3D space is the spatial 

integration of the probability density function over that volume: 

( , , )
r V

P W r t D dr
∈

= ∫∫∫      (3.13) 

 

W(r, t, D) is normalized, verifying that the probability of finding a particle in the entire 3D 

space is 1: 

3

( , , ) 1
r

W r t D dr
∈

=∫∫∫      (3.14) 

 

W(r, t, D) is also superimposible, which means that if the diffusion density distribution from 

a point source after Δt1is W(r, Δt1, D), and then every point is treated as new point source and 

diffused for Δt2, the resulting diffusion density distribution is identical to the one diffusing 

for Δt1+ Δt2.  Hence, convoluting W(r, Δt1, D) with W(r, Δt2, D) results in W(r, Δt1+ Δt2, D): 
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1 2 1 2( , , ) ( , , ) ( , , )W r t D W r t D W r t t DΔ ⊗ Δ = Δ + Δ    (3.15) 

Furthermore: 

1 2( , , ) ( , , ) ... ( , , ) ( , , )n i
i

W r t D W r t D W r t D W r t DΔ ⊗ Δ ⊗ ⊗ Δ = Δ∑   (3.16) 

This implies that using this W(r, t, D) function, diffusion can be divided into arbitrary time 

intervals, in each of which diffusion can be independently simulated to yield the same 

diffusion as if diffusion were carried out in one step. 

 

3.3 Simulation of random walk 

In diffusion simulation, the density distribution after the same total duration should be the 

same regardless to the choice of time step duration Δt of the simulation.  Hence, it poses a 

challenge to assign the random walk vector of each molecule give Δt such that the behaviour 

of individual molecules correctly contributes to statistical distribution of all molecules.  An 

accurate Monte Carlo method describing molecular diffusion is described in the following 

text. 

 

3.3.1 Random number generation with non-uniform distribution 

First, a method to generate random numbers with non-uniform distribution is described.  The 

application of this method to our simulation will become evident in the following sections.  

Random numbers are generally used in Monte Carlo simulations to provide sample values of 

random variables such as thermal noise, random forces, etc..  Most random number 

generators give uniform distribution of numbers, i.e. all numbers in a defined range have 

equal probability of being chosen.  This may not always be the case for random parameters in 
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simulations.  For instance, to describe the normal distribution of test marks of a class, a 

random number generator biasing towards certain range of mark must be used.  Here a 

method is devised to provide random number with arbitrary distribution profile: ( )P x  of x 

(the random variable), 1 2[ , ]x x x∈ .   

 

The distribution of x is analogous to the histogram of x.  Hence, if the area under ( )P x  

between 1 2[ , ]x x x∈  is sampled uniformly, the value of x for each sample point would have a 

sampling probability identical to ( )P x  (Figure 3-3).  The procedure can be carried out as 

follows: 

1. Generate a random number 
2

1
0, ( )

x

x
R P x dx⎡ ⎤∈ ⎢ ⎥⎣ ⎦∫ , where R comes from uniform 

random number generator 

2. Solve for x in 
1

( )
x

x
R P x dx= ∫ : 

Suppose the integration is:  

( ) ( )F x P x dx= ∫  

1
( )

x

x
R P x dx= ∫  

then becomes:  

11
( ) ( ) ( )

x

x
R P x dx F x F x= = −∫  

1( ) ( )F x R F x= +  

hence,  

( )1
1( )x F R F x−= +     (3.17) 

3. Using this equation, x would then have the ( )P x  distribution in 1 2[ , ]x x x∈  
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Figure 3-3: Probability distribution function of arbitrary shape integrated from x1 to x.  The x-axis is the 

desired random number, the y-axis is the probability distribution of the random number x.  

 

3.3.2 Random 3D-isotropic sampling: 

 

Figure 3-4: Spherical coordinate system, r, θ, and φ are defined as shown. 

 

To achieve isotropic sampling in all directions, θ  is uniformly sampled from 0 to 2π.  Hence, 

the probability distribution of θ  is a constant function: ( ) 1P θ ∝  with [0,2 )θ π∈ .  However, 
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if φ  were uniformly sampled from 0 to π, it leads to a sampling density distribution 

concentrated at the polar region with a density distribution of 1 sinφ  (see Figure 3-5).  To 

correct for this anisotropic distribution, more samples of φ  must be taken near the equator 

than at the poles.  The probability distribution of φ  is therefore not a constant function of φ  

but rather: ( ) sinP φ φ∝  with [0, ]φ π∈ . 

( ) 1,  [0, 2 )   
random sampling probability of  and  are:

( ) sin ,  [0, ]
P
P
θ θ π

θ φ
φ φ φ π

∝ ∈
∝ ∈  

 

 

Figure 3-5: Comparison of: A. uniform random sampling of θ and φ  and B. corrected random sampling 

of θ and φ .  The uniform sample of θ and φ  causes higher density at the polar regions and low density 

at the equator, hence, the distribution is not isotropic. 

 

Applying (3.17) to ( )P φ , [0, ]φ π∈ : 
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( )

( )

0

0

sin ' '

cos '

1 cos
arccos 1 ,  [0, ],  [0, 2]

R d

R R

φ

φ

φ φ

φ

φ
φ φ π

=

= −

= −

= − ∈ ∈

∫

 

where R is a random number between 0 and 2.  Hence, to generate isotropy using spherical 

coordinate: 

,      [0,2 ]
arccos(1 ),      [0,2]
rand rand

rand rand
θ π
φ
= ∈
= − ∈

    (3.18) 

The directional distribution using this set of equation is isotropic (Figure 3-5). 

 

3.3.3 Diffusion step size 

Equation (3.12) shows the diffusion probability density function.  Being a density function, it 

does not reflect the actual number of molecules within each shell surrounding the diffusion 

centre.  Consider what is depicted in Figure 3-6, the density is highest in the centre, however 

the population is highest at some distance from the centre.  To generate the correct density 

distribution given by W(r, t, D), the sampling probability for each radius r must be proportion 

to the population distribution (1D radial density distribution) and not the 3D density 

distribution.   
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Figure 3-6: Comparison of the density distribution and population distribution in 2D.  The numbers 

shown in each ring indicate the unit density / population within that ring.  The population within each 

ring is then the area of that ring multiplied by the density in that ring.  If the density distribution peaks 

at the centre as in a Gaussian distribution, the population would peak at some distance away from the 

centre. 

 

The population (1D radial density) distribution is given by integrating W(r, t, D) over 

spherical shells: 

2

0 0

22

0 0

2

( , , ) sin ( , , )

( , , ) sin   since  is spherically symmetrical

4 ( , , )

P r t D rd r W r t D d

W r t D r d d W

r W r t D

π π

π π

φ φ θ

φ φ θ

π

=

=

=

∫ ∫
∫ ∫

 

We verify again that P(r) is normalizable: 

2

0 0 0 0
( , , ) sin ( , , )

1

P r t D dr dr rd r W r t D d
π π

φ φ θ
∞ ∞

=

=
∫ ∫ ∫ ∫  
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  (3.19) 

 

The inverse function r(R), diffusion radius r as a function of random number R, was 

found numerically by solving (3.19) at each R from 0 to 1 with 0.0001 intervals. 

(Figure 3-7) 
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Figure 3-7: Plot of R(r).  Horizontal axis is the radial distance 
4
r
Dt

 in spherical coordinate, the 

vertical axis is R, indicating that if the variable R were to be random sampled, the radial distribution will 

achieve Gaussian density distribution.   

 

3.4 Molecular collisions from random walk 

In this section, the interaction, in particular, the collision between two random walking 

molecules is studied.  One parameter to consider is the size of the molecules.  First, imagine 

two elephants random walking from 10 meters apart, their likelihood to collide is high.  

Imagine again the same setup but with two flies.  The probability of the flies flying into each 

other is much lower.  Going into the extreme of two ideal points, given the same period of 

time, it is nearly impossible for them to collide.  Intuitively, it suggests that the larger the size 

of random walking objects, the higher their collision probability is in a given time duration.  

Similarly, the sizes of molecules are important for their collision rate. 
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Two molecules A and B with finite size, their collision can be defined as their centre of mass 

being within certain distance.  Assuming they are rigid spheres, the distance is the sum of the 

radius of the two spheres.  This may be a rough estimation, but it allows a simple model to be 

built upon it.  Later in this section, a factor will be introduced to correct for this assumption.  

Therefore, if A and B both walk into a spherical volume with diameter equal to the sum of 

their radii, a collision occurs.   

 

To simplify the math, molecule A and B are placed on the x-axis with a separation of l0, the 

origin is placed at the midpoint of A and B.  The diffusion probability density function 

(dPDF) for molecule A and B are WA and WB, as defined in the previous section, are: 

( ) ( )

( ) ( )

3/ 2 2 2 21
02

3/ 2 2 2 21
02

1, , exp
4 4

1, , exp
4 4

A A
A A

B B
B B

x l y z
W r t D

D t D t

x l y z
W r t D

D t D t

π

π

⎛ ⎞+ + +⎛ ⎞
⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎛ ⎞− + +⎛ ⎞
⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

 

An effective collision volume Vc is defined here to describe the volume within which 

collision occurs: 

0c fV V V= +      (3.20) 

It is the sum of two volumes: where V0 is the collision volume strictly defined by the 

geometry of the molecules and Vf is a correction “fictitious” volume.  Within this “fictitious” 

volume, the molecule pair feel either repletion (-) or attraction (+) force between them, which 

may increase or decrease the likelihood of collision, hence changing the effective collision 

volume.  For instance, if there is attraction between a pair of molecules, the fate of collision 

between the pair may be determined when they haven’t physically collided.  In the contrary, 
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if two molecules repel each other, even though they get close by, their chance of collision is 

decreased by the force pushing them apart.  Therefore, the size of the molecules alone is not 

a good indicator of the collision volume. 

 

 

Figure 3-8: Illustration of random walk collision.  The wiggly lines are the actual path each molecule 

takes to get to the collision site.  The arrows indicate the vector from molecule original location to the 

collision site, which gives the probability they will land there.  The box is the volume in which collision 

would occur.   

 

Because the collision volume is relatively small compared to the molecular distance, WA and 

WB values can be assumed as constants in the collision volume Vc.  Hence, the probability of 

A and B walking into the volume Vc are:  

( , , ) ( , , )

( , , )

A A A A
r Vc r Vc

A A c

W r t D dr W r t D dr

W r t D V
∈ ∈

≈

=

∫∫∫ ∫∫∫
 

( , , ) ( , , )

( , , )

B B B B
r Vc r Vc

B B c

W r t D dr W r t D dr

W r t D V
∈ ∈

≈

=

∫∫∫ ∫∫∫
 

 

Therefore, the collision probability inside a volume of Vc, at r from the origin and after a 

period of t is: 
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2
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∈ ∈

= ≈∫∫∫ ∫∫∫  (3.21) 

It follows that the collision probability density function (cPDF) ( )0, ,c r t lρ  is: 
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(3.22) 

The time evolution of the collision probability density function as well as its spatial 

distribution is shown in Figure 3-9 and Figure 3-10.  

 

 

Figure 3-9: The time evolution of collision probability density in 2D.  The horizontal plane indicates the 

physical space where molecules move and collide.  The vertical axis is the collision probability density.  
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The parameters used here are: DA=DB =10-10 m2/s, Protein diameter=5 nm, Vc=5.2e-25 m3, l0=10 nm, time 

range=[10ns, 100ns] at 10ns interval.  The peak is located at the centre of the two reagent molecules. 

 

2μ10-7 4μ10-7 6μ10-7 8μ10-7 1μ10-6
t

2μ1020

4μ1020

6μ1020

8μ1020

1μ1021

1.2μ1021

1.4μ1021

cPDF

 

Figure 3-10: Spatial variation of the collision probability density function.  The horizontal axis is time, 

the vertical axis is the collision probability function.  Each curve shows the cPDF at a distance from the 

maximum location of the cPDF function (from 10 nm to 20 nm at 2 nm intervals).  Parameters used in 

this plotting are: DA=DB =10-10 m2/s, Protein diameter=5 nm, Vc=5.2e-25 m3, l0=10 nm. 

 

Integrating the cPDF over the entire 3D space at time t gives the probability of collision Pc(t, 

l0): 
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(3.23) 
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Figure 3-11: Collision probability function with respect to time.  The following parameters are used: 

DA=DB =10-10 m2/s, protein diameter=5 nm, Vc=5.2e-25 m3, l0=10 nm. 

 

This function describes the collision probability at time t.  The two molecules are initially 

separated at a distance l0 and allowed to diffuse at t=0 with diffusion constant DA and DB.  

Note that, this is not the probability of collision since t=0, but the probability at the instance 

of t.  

 

The general features on this curve are expected: the collision probability remains 0 until 

shortly after t=0 as diffusion must occur before the molecules can travel far enough to collide 

with each other; soon after this, the probability would reach a maximum; and then, as time 

goes on, the statistical distance between A and B would increase due to diffusion, hence the 

decreasing collision probability. 
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3.5 Association reactions from a microscopic perspective 

Reactions are direct results of molecular collisions.  During the development of this theory, it 

was realized that the collision probability alone is not sufficient to provide the reaction 

probability.  Imagine two physically identical situations simulated with different time step 

durations:  using small time step durations, if a pair of molecules collided, the same pair of 

molecules could stay in collision state for many time steps thereafter, as it would take many 

steps of diffusion to bring them out of the collision distance.  However it could take as few as 

one step if the time step duration were significantly longer.  If the reaction probability is 

directly proportional to the collision probability, then smaller time step duration would give 

rise to a much higher reaction probability.  Hence, the probability of reaction per time step 

not only dependents on the collision probability Pc(t, l0), but also on the length of the time 

step duration.  In other words, whether a reaction occurs depends on how long two molecules 

stay in the collision state.  Therefore, an accumulative collision probability function (cAPF) 

is introduced: 
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Figure 3-12: The accumulative collision probability function 00
( ', ) '

t

cP t l dt∫  as a function of time. 
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This function has an asymptotical upper bound of 
( ) 04

c
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 as time approaches 

infinity.  The physical meaning of this function is the expected duration of time in which the 

two molecules remain in the collision state in a given period of time t: 
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Not every collision results in reaction, to relate the probability of reaction to collisions 

between molecules, a hypothetical collision-reaction time constant, τr, is introduced here.  

This is the time constant by which a collision state between two molecules will “decay” into 

the reaction product.  The reaction probability Pr(t, l0) is then: 

0( , ) 1 exp c
r

r

t
P t l

τ
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

    (3.26) 

 

This hypothetical formulation provides satisfies key features required of the reaction 

probability: 

• The longer two molecules remain in collision state, the more likely they will react, 

hence the function must be an increasing function. 

• The probability is 0 if the expected collision state duration is 0, hence the function 

must pass through the origin. 

• The probability of reaction between two molecules cannot exceed 100%.  Hence, the 

function must have an upper bound of 1. 
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Figure 3-13: Probability of reaction as a function of the duration of collision state <tc>.  The horizontal 

axis is in unit of τr. 

 

The collision-reaction time constant, τr, takes into account that even with the same expected 

collision duration, some reactions are more likely to occur than others due to difference in 

activation energy barrier and steric hindrance.  This does not conceptually conflict with the 

effective collision volume (Vc), because Vc deals with forces that bring molecules into 

collision, whereas τr deals with which collision could result in reaction.   

 

One question naturally arising from this hypothesis is whether it matters if the collision state 

is continuous or fragmented.  For example, if the collision state occupies 50% of time, it 

could be a continuous 0.5 second for every 1 second (scenario 1), or 10 of 0.05 second 

continuous collision state for every 1 second (scenario 2).  The total probability of reaction is 

then related to the separated collision events by: 

 

Scenario 1: since there is only one partition in the duration of collision state, i.e. collision 

time is continuous: 
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Scenario 2: the total duration of collision state is partitioned into n discontinuous portions, 

the total probability of no reaction happening is if reaction does not happen in any of the 

partitions: 
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since 
1

n
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=∑  in any given time interval, 
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     (3.30) 

 

The reaction probability from scenario 2 is identical to scenario 1.  Hence, we proved that 

only the total collision duration length matters, the details on how often they collide and how 

the collision state duration partitions does not matter.  Substituting the expression for <tc>total 
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(3.24) and (3.25), we get reaction probability between two molecules with initial separation 

of l0 and after a period of time t: 

( ) ( )

0 0

0

0

1( , ) 1 exp ( , )

11 exp 1
4 4

i jr c A B
r t

c

r A B A B

P t l P t l dt
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D D l D D t

τ
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Δ
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⎝ ⎠
⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟= − − −
⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠⎝ ⎠

∫

  (3.31) 

 

However, the goal is to be able to use real kinetics parameters in simulations.  The 

hypothetical parameters τr and Vc are not given available in literatures, and must be 

substituted by real kinetics parameter ka. 

 

3.6 Association reaction - relating microscopic and macroscopic 

behaviour 

In this section, the question of how is the microscopic behaviour related to the association 

rate constant is answered.  To study the problem, an ensemble of molecules must be studied 

instead of a single pair.  Supposed there is a collection of molecule A: { }iA ; and B: { }jB , the 

reaction probability of an individual pair Ai-Bj, Pr
ij, is: 
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4 4
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r ij c ij A B

r t
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τ
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Δ
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⎝ ⎠
⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟= − − −
⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠⎝ ⎠

∫

 (3.32)
 

 

The reaction probability between Ai and all of { }jB , Pr
i , can be related by: 
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 (3.33) 

 

The critical question of how to relate this to empirical rate constant must be answered.  To 

link the association rate constant ka with microscopic quantities τr and Vc, consider a single 

molecule of A in a homogeneous concentration of molecule B.  Under this situation, the 

concentration of B is far greater than A, hence the concentration of B can be regarded as a 

constant B0.  The rate equation for A, it can then be written as: 

0

0 0

( ) ( ) ( )

( )
( ) exp( )

a

a

a

dA t k A t B t
dt

k A t B
A t A k B t

= −

= −

= −

     (3.34) 

The macroscopic description of reaction probability of the single molecule A is then: 

( )0( ) 1 exptotal
r aP t k B t= − −      (3.35) 

The microscopic description of reaction probability of the single molecule A is: 

0

1( ,{ }) 1 exp ( , )
j

ttotal
r j c ij AB

jr

P t B P t l dt
τ

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑∫    (3.36) 

 

Both descriptions should yield the same result, hence equating them gives: 
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   (3.37) 

 

The summation over all j means that in the infinite 3D space homogeneously filled with B, 

the expected collision duration of the A molecule with all Bj molecules.  One can 

immediately see this is the equation relating ka with our hypothetical parameters τr and Vc 

(contained in Pc(t)).  The above summation is impossible to carry out, hence to sum over the 

entire 3D space with homogeneous B, we convert the summation to integration with: 

3
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   (3.38) 

where NA is the Avogadro’s number.  The integral converts the discrete molecular 

distribution of { }jB  to a continuous homogenous “field” of B such that the “density” of B in 

this field is the concentration of B in the discrete space.  Hence: 

2
0 00 0

1 4 ( , )
j

t

a A c AB
r

k B t B N l P t l dtdlπ
τ

+∞
= ∫ ∫    (3.39) 

By substitution of:  
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t c
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A B A B
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D D l D D tπ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= −
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∫ (3.40) 

The previous equation becomes: 
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Surprisingly, there is a numerical solution to the integration: ( )( )
0

11
4

x erf x dx
+∞

− =∫ , which 

reduces the equation to an elegant form: 

1a r

c A

k
V N
τ

=      (3.42) 

 

This states a simple relationship between the association rate constant ka with the parameters 

Vc we hypothesized and used in the theory.  Here, a dimension analysis was made: 

Parameter Unit (SI) 
Vc m3 
τ s 
ka M-1s-1 = mol-1m3s-1 
NA mol-1 
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τ − −

−= =  

Perfecto!  Hence, the hypothetical parameters in the equation can be replaced by the 

experimentally measurable rate constant ka: 

c a

r A

V k
Nτ

=      (3.43) 

Hence, the final form of reaction probability between 2 molecules writing with macroscopic 

parameter is: 

( ) ( )
( , ) 1 exp 1

4 4
ija

ij ij
A B A ij A B

lkP t l erf
D D N l D D tπ

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟= − − −
⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠⎝ ⎠

 (3.44) 

 

3.7 Dissociation reactions - relating microscopic and macroscopic 

behaviour 

Dissociation reactions can take the following forms: 

1 2

1 2 3 ...

d

d

d

k

k

k

A B

A B B

A B B B

⎯⎯→

⎯⎯→ +

⎯⎯→ + + +

 

As the reagent involves only one molecule, they can be described by one simple 

deterministic rate equation: 

( ) ( )d
dA t k A t

dt
= −      (3.45) 

With solution: 

( )0( ) exp dA t A k t= −      (3.46) 
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Since the dissociation reaction is independent of any interactions with other molecules, the 

reaction probability for each molecule as a function of time is: 

( ) 1 exp( )r dP t k t= − −      (3.47) 

 

3.8 Summary 

In summary, the theory bridges the macroscopic measurable parameters with microscopic 

parameters needed for the Monte Carlo method. First, the motion of molecules was modelled.  

The macroscopic diffusion coefficient was related to the microscopic random-walk motion of 

each molecule.  The direction and length of each random step is defined in the spherical 

coordinate: 

,  [0, 2 )
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rand rand
rand rand

θ π
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= ∈
= − ∈
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2

( ),  [0,1)

where ( ) exp
44

r F rand rand

r r rF r erf
D tD t D tπ

−= ∈

⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟ ΔΔ Δ⎝ ⎠ ⎝ ⎠

 

where rand is a random number in the specified range, erf is the error function, D is the 

macroscopic diffusion coefficient, and Δt is the simulation time step duration.  This model 

ensures that the simulated diffusion coefficient always agree with the input diffusion 

coefficient regardless of the Δt chosen for the simulation. 

 

Second, the macroscopic reaction rate constants for association and dissociation reactions are 

related to the microscopic reaction probability of each molecule.  The probability of an 

association reaction between the two molecules depends on their initial separation (l0), 
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diffusion constant (DA, DB), the time duration allowed (Δt) and the association reaction rate 

constant (ka): 

0

0
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The probability of a dissociation reaction depends only on the time duration allowed (Δt) and 

the association reaction rate constant (kd): 

( )1 expd rP k t= − − Δ  
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Chapter 4  

 

MBS: Monte Carlo Biochemical Reaction 

Simulator 
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4.1 Introduction 

The MBS package was developed using DEV-CPP in standard C++ and compiled using 

GCC3.4 (and above).  It consisted of a program for simulating biomolecular reactions and a 

program for visualizing the results.  For the simulation of reaction networks, the simulation 

program was controlled from command line by three setup scripts describing the reaction, the 

geometry and the experiment time course, respectively.  The purpose of the scripts was to 

avoid modification and recompilation of the source code for different experiments.   

 

4.2 Implementation 

The simulation uses equal time step durations to simulate reactions.  In each time step, all 

molecules were randomly moved according to Section 3.3.2 and 3.3.3.  Molecules were 

selected randomly to ensure no molecules react statistically earlier than others to avoid 

biasing their probability of reaction.  For each selected molecule, the type of reactions it can 

undergo was chosen in random order as well to avoid biasing toward certain types of 

reactions.  Furthermore, if the chosen reaction was an association reaction, reaction partners 

were chosen at random to again avoid biasing their probability of reaction.  The locations of 

each molecule and the concentration of each type of molecule were recorded in data files for 

each time step.   For the visualization of the results, the program used OpenGL to play back a 

3D movie of the molecular movement and reaction.  The molecule concentrations over time 

were stored in a separate data file, which could be imported by standard data analysis 

software such as Excel or Origin Labs to analyze the reaction kinetics.  The following 

sections will discuss the implementations in detail. 
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4.2.1 Program architecture 

The software package is written with many modules for easy debugging and future 

development.  Each module handles a set of unique functions: 

 

physParam – all the physical parameters are defined here. 

 

randomNumber – generates all the random numbers needed in this program, an essential for 

Monte Carlo simulation. 

 

Mersenne Twister random number generator – true double precision random number 

generator seeding randomNumber. 

 

inverse3DGaussian – a custom numerical function, reading pre-tabulated numerical table 

from file. 

 

dataFetcher – I/O accessing data structure and handles all data I/O exceptions. 

 

geometry – defines the geometric space where molecules can move, it performs checks to 

determine if all molecules are moving within their regions. 

 

reaction – handles all the reactions (association and dissociation) as well as the order of 

reactions for all molecules. 
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diffusion – handles the random walking motion of all molecules, while calling geometry to 

ensure that all molecules remain in their defined regions. 

 

experiment – provides the time course of the simulation.  Molecules can be added or moved 

at any time step, physical parameters such as temperature can also be changed 

with respect to time. 

 

main – the main program coordinating the simulation.  It is responsible for file I/O and 

handles all the exceptions. 

 

display – the main program for reading and displaying the output movie file using openGL. 

 

The relationship between these modules is shown in Figure 4-1. 
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Figure 4-1: Software architecture.  Calling between classes, files and data structures.  Solid black: 

program internal calling between classes.  Solid grey: file I/O.  Dotted black: memory data structure 

access. 

 

4.2.2 Data structure 

For optimal speed performance, a custom memory-based data structure was used.  The data 

structure includes the following parameters: 
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• Number of molecular species 

• Maximal number of molecules per species 

• Active number of molecules per species 

• For each molecule: 

o Name 

o Active flag of current step 

o Active flag of previous step 

o Location (x, y, z) at current step 

o Location (x, y, z) at previous step 

o Mass 

o Size 

o Diffusion coefficient 

o Region it can travel within 

• Number of association reactions 

• Number of dissociation reactions 

• For each association reaction: 

o Reagent 1 

o Reagent 2 

o Product 

o Association rate constant 

• For each dissociation reaction: 

o Reagent 

o Number of product 

o Array of product ID 

o Dissociation rate constant 

• Association reaction hash table 

• Dissociation reaction hash table  
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The molecule information of both the current time step and the previous time step are used as 

required by reaction handling. (See Section 4.2.5)  The program requires the total number 

molecules to be allocated in arrays prior to the simulation such that there is no need to 

dynamically allocate and destroy molecules during the simulation, for performance 

optimization.  The allocated number of molecules for each species must be enough to cover 

for all situations.  Since each molecule occupies ~50byte in memory only, it is efficient to 

assume a much higher safe upper bound population for each molecule species as most 

simulations have a total population around 10000 (~500kB of memory) molecules only.  

Therefore, whether a molecule is currently participating a reaction or merely a “ghost” 

depends on the active flag.  When the flag becomes true, the molecule is materialized in the 

simulation that participates in diffusion and reaction.  When a reaction occurs and the 

molecule is turned into something else, the active flag of the reagent molecule becomes 

“false”, and the product becomes “true”.  The program will never update or consider 

molecules marked “false” on active flag, hence creating no drawback on performance. 

 

The association reaction hash table is a look up table: given the two reagent molecule IDs, 

the product molecule ID is the value in the hash table.  In addition, the association reaction 

hash table must be able to handle situation where two reagent molecules could result in more 

than one product, such as: 

1

2

a

a

k

k

A B C

A B D

+ ⎯⎯→

+ ⎯⎯→
 

For instance, if there are 5 reactions and the molecules are identified by numbers, then: 

0 + 1  2 

2 + 3  0 
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2 + 4  1 

2 + 4  5 

3 + 3  4 

would produce the following 3 dimensional association reaction hash table: 

 

layer 1: Number of reactions for each reagent pair 

0 1 2 3 4 5 

------------------------------- 

0| 0 1 0 0 0 0 

1| 1 0 0 0 0 0 

2| 0 0 0 1 2 0 

3| 0 0 1 0 0 0 

4| 0 0 2 0 0 0 

5| 0 0 0 0 0 0 

 

layer 2: First reagent molecule ID for each pair 

0 1 2 3 4 5 

------------------------------- 

0| -1 2 -1 -1 -1 -1 

1| 2 -1 -1 -1 -1 -1 

2| -1 -1 -1 0 1 -1 

3| -1 -1 0 4 -1 -1 

4| -1 -1 1 -1 -1 -1 

5| -1 -1 -1 -1 -1 -1 

 

layer 3: Second reagent molecule ID for each pair 

0 1 2 3 4 5 

------------------------------- 

0| -1 -1 -1 -1 -1 -1 

1| -1 -1 -1 -1 -1 -1 

2| -1 -1 -1 -1 5 -1 



 65

3| -1 -1 -1 -1 -1 -1 

4| -1 -1 5 -1 -1 -1 

5| -1 -1 -1 -1 -1 -1 

 

The first layer of the hash table indicates the number of reactions for each pair of reagents.  

In this case, there are two reactions possible for reagent molecule ID 2 and 4.  The second 

and third layers are the product molecule ID for each pair.  A “-1” indicate that those pairs do 

not react.  The dissociation reaction table was constructed similarly. 

 

4.2.3 Handling diffusion in restricted regions 

In unrestricted space, diffusion is handled by equations of motion in Section 3.3.2 and 3.3.3.  

However, most biological systems have boundaries such as the cell wall or the nuclear 

membrane.  They create spatial regions where molecules cannot escape.  Spatial regions are 

created here by defining simple geometric shapes (Table 4-1): 

 

Table 4-1: Region types and definition parameters. 

Region shape Definition parameters 
Box Centre (x, y, z) and dimension (width, length, height) 

 
Box shell Centre (x, y, z), dimension of the inner box (width1, length1, height1) 

and of the outer box (width2, length2, height2) 
 

Sphere Centre (x, y, z) and radius (r) 
 

Sphere shell Centre (x, y, z), inner radius (r1) and outer radius (r2) 
 

Cylinder Centre (x, y, z), radius (r) and length (l) 
 

Cylinder shell Centre (x, y, z), inner radius (r1), outer radius (r2) and length (l) 
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Each region is defined by a unique region ID.  And each molecular species is marked with 

region IDs they are allowed to move in.  Because the regions are well defined simple 

geometric shapes, it is easy to check whether a molecule is within a region.  Before the 

location of a molecule is assigned in the next time step by diffusion, a candidate location is 

created first.  If the candidate location is inside the assigned region, it is assigned as the real 

molecule location.  However, if the candidate location drifts outside the assigned region, a 

new candidate location is generated until the new location is within the assigned region.   

 

In simulations, it should be kept in mind that the time step duration should not be too large 

such that the diffusion random walk step length is never larger than the dimensions of the 

region.  In that case, it would be extremely computationally expensive to diffuse molecules in 

a small region as many trials must be performed.  In situations where the random walk step 

length is much greater than the dimension of the region, it can usually be assumed that the 

molecule distribution within that region is homogeneous.  Hence, a smaller substitutive 

diffusion coefficient can be used to reproduce the same concentration homogeneity within 

the regions in return for higher computational efficiency. 

 

4.2.4 Handling single reactions 

To determine whether a reaction will occur, their reaction probability is calculated according 

to Section 3.6 (for association reactions) and Section 3.7 (for dissociation reactions).  This 

reaction probability (value between 0 and 1) is then compared with a random number taking 

value between 0 and 1 to determine whether the reaction occurs or not.  If the random 
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number is less than or equal to the reaction probability, a reaction will occur.  Otherwise, the 

reaction does not occur.  The location of the product molecule C is on the line segment 

joining the two reagent molecules A and B where the ratio of distance AC to CB was 

proportional to their average random walk step length. 

 

If an association reaction does occur in the previous time step, the reagent molecules are 

removed from both the previous and current time step, whereas the product molecule is 

created only in the current time step.  Avoiding creating and destroying molecules from the 

same molecule data structure allows the program to know the molecules that have attempted 

reaction and the ones that are newly created.  To ensure the correct overall kinetics, these 

molecules should not participate in reactions for a second time in order. 

 

4.2.5 Handling multiple reactions 

Suppose a molecule A can participate in multiple association and dissociation reactions: 

1

2

a

a

d

d

k

k

k

k

A B C

A D E

A F G

A H I

+ ⎯⎯→

+ ⎯⎯→

⎯⎯→ +

⎯⎯→ +

 

Since our Monte Carlo simulation uses discrete time steps, it must decide for each molecule 

A, whether it will react and if so, which reaction it will undergo.  For each molecule A at 

every time step, the four possible reactions are shuffled in random orders.  They are then 

tried one by one to see whether a reaction would occur.  If a reaction does occur, the rest of 

the reactions are not tried.  Each reaction is handled as described in the previous section 

(Section 4.2.4).  All reactions involving molecule A are tried instead of just randomly 
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picking one reaction is because the rate of reaction is additive when more possible reactions 

involving molecule A are possible.  If only one reaction is chosen, it is equivalent to dividing 

the probability (and rate) of each reaction by the number of total number of reactions.  Hence, 

all reactions must be tried within one time step to recreate the same rate for each reaction. 

 

4.2.6 Random number generation 

In C++, the default random number generator generates a random integer between 0 and 

32767.  A double precision number generated from this random integer has a maximal 

resolution of 32767 bins.  Hence, for deciding whether a reaction would occur (Section 4.2.4), 

the smallest value of the random number is 0 and the second smallest value would be 

1/32767=3.05×10-5.  Hence, if a reaction has a theoretical probability of less than 3.05×10-5, 

the simulated probability would the same because 0 random number value would always 

allow the reaction to occur, which has a constant probability of 3.05×10-5.  Due to this error, 

all simulated kinetics curves association reactions with rate constants smaller than 10-5 M-1s-1 

converge. 

 

This problem was solved by introducing a true double precision random number generator 

using the Mersenne Twister algorithm, extending the lower bound of the random number to 

1/1.8×10308 ≈ 5.5×10-309, well beyond any physically realistic of rate constants. 

 

4.2.7 Optimizations 

The following optimizations were made to improve the performance of the program: 
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Complexity reduction 

The reaction probability between every pair of reagent molecules are calculated for each time 

step.  This is the most computational expensive calculation as the complexity scales with the 

number of reactions (Nreaction) and the square of number of reagent molecules (Nreagent): 

2( ) reaction reagentO N NΩ = ×  

For a normal simulation with 105 – 106 molecules, this would be 1010 – 1012 calculations per 

time step, too slow for a standard PC.   

 

To reduce the complexity, we assumed that two molecules can never react if they are beyond 

their diffusion limit.  The diffusion limit distance is chosen as two times of the diffusion 

profile width.  When two molecules are beyond this distance apart, their reaction 

probabilities are practically 0.  Doing so, the majority of the molecules do not need to 

participate in the time consuming computation of reaction probability.  The complexity of the 

computation is effectively reduced to: 

( ) reaction reagentO N NΩ = ×  

Although the complexity of the most expensive function call is reduced, one still needs to 

calculate the distance between every pair of reagent molecules to determine which pairs are 

selected for reaction determination.  We expect development in the future to optimize this. 

 

Data structure optimization 

Static hash tables are used instead of dynamic data structures to save the computational time 

from excessive memory allocation/delocation, I/O and searches.  Static tables are good 
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choices for this application because the reaction information does not change, and the size of 

molecule information does not fluctuate significantly. 

 

Minor function optimizations 

• Functions are optimized by reducing the amount of unnecessary math operations.  For 

instance, in a function comparing the distance between two points with a fixed value 

could be speed up 5 fold by not using the square root function.  Instead, comparisons 

were made between the squares of the two distances.   

 

• Conditions yielding straight results were put at the beginning of the function such that 

no computations are performed when the conditions are met. 

 

• All the symmetrical matrix calculations were performed on only half of the matrix to 

save computational time. 

 

• Frequently accessed functions are written as inline functions to save the function 

calling time. 

 

• The code was compiled using best optimization method offered in C++: “-fexpensive-

optimizations -O3”. 
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4.3 Using MBS 

4.3.1 Running MBS 

There are five files necessary for running the MBS simulation: 

• MBS.exe – the executable 

• inverse3DGaussian.function – numerical function tabulation 

• setup – text file containing molecular and reaction information 

• experiment – text file scripting the time course of the experiment 

• geometry – text file specifying the geometric constraints of the reaction 

 

MBS.exe must be called from command line.  There are three ways to call the MBS.exe: 

 

MBS.exe setup experiment geometry -m movie 

MBS.exe setup experiment geometry -d data 

MBS.exe setup experiment geometry -m movie -d data 

 

The setup, experiment and geometry file names must be in order following the MBS.exe.  

There are three options to output the movie file, the data file, or both.  If the input 

information contains error, or any of the script files contains error, the program will exit with 

an error message showing the potential source of error.  If the parameters are correct, the 

program will continue executing.  One should expect the following on the command window 

screen (Figure 4-2 and Figure 4-3): 
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Figure 4-2: Running MBS screenshot.  Initialization and parsing setup, experiment and geometry scripts. 
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Figure 4-3: Running MBS screenshot.  Simulation and total runtime. 

 

To ensure the program has parsed all the information in the script file correctly, the 

experiment time course and molecule information are displayed for double-checking.  

(Figure 4-2)  As the program runs, the number of molecules actually added and removed as 

specified by the experiment time course is displayed as well as a progress bar.  When the 

program finishes execution, it displays the total runtime.  (Figure 4-3) 

 

4.3.2 Viewing molecule movie 

There are three files required for running the MBSmovie simulation: 

• MBSmovie.exe – the executable 

• setup – text file containing molecular and reaction information 
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• movie – the output movie file 

 

MBSmovie.exe must also be called from command line with the following command: 

 

MBSmovie.exe setup movie 

 

An OpenGL window should be displayed as shown in Figure 4-4.  The window displays the 

colour coding for each molecule and the current time step index.  The movie is played back 

in loops.  The movie can be paused or resumed by pressing “p”.  The motion of the mouse 

controls the viewing angle of the whole reaction.  Zooming in and out is by pressing “a” and 

“z”, respectively. 
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Figure 4-4: MBSmovie displaying a reaction in a spherical region.  The fps and current step index are 

displayed on the left upper corner.  The colour map for different molecules is displayed on the upper 

right corner.  On-screen instructions are displayed at the bottom of the screen. 

 

4.3.3 Input scripts 

Three aspects of the simulation: reaction, time course, and geometry are divided into three 

input scripts.  Three scripts are used instead of combining them into one because in most 

situations, we want to tune the simulation by modifying information in only one of the 

aspects and keep the rest unchanged.  The information included in each script is summarized 

in Table 4-2. 

Table 4-2: Details included in the setup scripts for each simulation 

Molecule and reaction Geometry Time course 
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 Molecules 

• Diffusion coefficient 

• Size 

• Mass 

 Reaction 

• Chemical formula 

• Rate constants 

 Setups 

• pH 

• Temperature 

• Viscosity 

• Time step duration 

• Total simulation 

duration 

 

 A combination of: 

• Sphere 

• Box 

• Cylinder 

• Spherical shell 

• Box shell 

• Cylindrical shell 

 

 Adding or moving 

molecules at arbitrary 

time step 

 Changing environment 

such as temperature or 

pH at arbitrary step 

 

 

Setup script 

The setup script provides detailed molecule information such as their diffusion constant, 

maximal expected population and the region they belong to.  In addition, reactions as well as 

their rate constants are defined in the setup (Figure 4-5): 
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Figure 4-5: Format of the setup script. 

 

Experiment script 

In many cases, we would like to study how the biomolecular system responds to external 

stimuli.  Hence, the program allows addition and removal of molecules at any time during the 

simulation.  This experiment information is contained in the experiment script. (Figure 4-6) 
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Figure 4-6: Format of the experiment script. 

 

Geometry script 

This script specifies the spatial regions where different molecules can move within.  The 6 

types of geometric regions are defined in Table 4-1, and the setup of the script is shown in 

Figure 4-7: 

 

 

Figure 4-7: Format of the geometry script. 
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4.3.4 Output file format 

Kinetics data 

The kinetics data composes of the total population of each molecular species for every time 

step in a text file (Figure 4-8):  

 

 

Figure 4-8: Format of kinetics data output file. 

 

Reaction movie 

The reaction movie file records the location of every molecule throughout the reaction.  The 

reaction movie can be used to reconstruct the kinetics data, as the active population of each 

specie is known.  The format of the reaction movie file is shown below (Figure 4-9): 
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Figure 4-9: Format of reaction movie output file. 
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Chapter 5  

 

Model systems 

 

 

 

 

 

 

 

 

The content of this chapter was modified from the peer-review journal paper:  

I. T. S. Li and K. Truong, "A computation tool for Monte Carlo simulations of biochemical 

reactions modeled on physical principles," Bioinformatics (submitted), 2007. 
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5.1 Overview 

The following model systems are studied in this chapter: 

• Diffusion from a single source – verification of our Monte Carlo diffusion method 

with deterministic solution.  The advantage and accuracy of the method demonstrated 

by comparison with another method used in literature. 

• Simple reaction kinetics – verification of the association, dissociation reaction 

kinetics by comparing to deterministic kinetics.  The equilibrium points of reversible 

reactions were also verified with deterministic kinetics. 

• The predator-prey model – demonstrating the spatial and temporal molecular 

fluctuation greatly influence the overall reaction kinetics. 

• The genetic oscillator – genetic oscillator simulated in prokaryotic cells are 

compared with that in eukaryotic cell to show how the localization of DNA in the 

eukaryotic nucleus changes the behaviour of the genetic oscillator. 

• Ca2+ wave along a cylindrical compartment – showing how the geometric 

distribution of membrane channels changes the fast kinetics of Ca2+ wave propagation. 

• Design of a chemical memory unit with synthetic protein network – a protein 

network was designed and simulated to show that it is capable of memorizing a 

chemical state.  The behaviour is modeled analogous to that of a D-latch commonly 

used in electrical circuits. 
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5.2 Diffusion verification 

5.2.1 Method 

To test our diffusion model, 104 non-interacting molecules were initially placed at the 

location of one point and allowed to diffuse over time.  Then, the molecule distribution in our 

simulated diffusion was verified to be correct by comparing the result to the deterministic 

solution.  Next, the diffusion process was verified to be independent to the Δt by modeling 

identical diffusion processes using D=10-10 m2s-1 under different Δt ranging from 10-5 s to 10-

3 s.   

 

5.2.2 Results and discussions 

Our diffusion model was accurate in describing the physical process of diffusion at the 

different time step durations (Δt).  Since the diffusion process is independent of Δt, a 

difference in Δt should ideally not affect the diffusion kinetics, but instead only change the 

temporal resolution.  To test this condition, 104 molecules were placed at a single point and 

diffused with various Δt.  With the same initial condition and total simulation duration, the 

population distributions (Figure 5-1A) were identical using different Δt in the simulations.  

Furthermore, the population distribution coincided with the deterministic distribution 

described by the macroscopic diffusion equation: 

( ) ( )2,
,

r t
D r t

t
φ

φ
∂

= ∇
∂  
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where D was the diffusion coefficient, q was the density distribution as a function of r (the 

vector from the centre of diffusion to the point of interest) and t (the total duration of 

diffusion).  Hence, our diffusion model produced the correct spatial profile of molecules, 

which provided a solid foundation for accurately assessing reaction kinetics. 
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Figure 5-1: A.  The population distribution of 104 molecules was diffused from a single point as a function 

of their distances from the origin of diffusion.  The three distinctive humps are the population 

distribution of different total time durations of 10 ms, 100 ms and 1000 ms.  The three shades are 

simulations under different time step duration Δt=10-3 s (lighter grey), 10-4 s (darker grey) and 10-5 s 

(black).  The coincidence of the three shaded curves shows that diffusion is independent to the Δt. The 

same diffusion coefficient D=10-10 m2/s is used.  The population distribution of B. uniform step size 

distribution model and C. our diffusion model show good agreement with deterministic solution for our 

model and disagreement for the uniform distribution model.  Both simulations have a total duration of 

0.1 s.  The deterministic solution is indicated as the thick grey line.  The population distributions using 5 
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time step durations Δt=10-2 s (solid square), 5×10-3 s (hollow square), 10-3 s (solid triangle), 10-4 s (hollow 

triangle), and 10-5 s (solid circle) were compared with the deterministic solution. 

 

In contrast, a uniform step size model used in recent literature was not accurate in describing 

the physical process of diffusion.  In this model, the random walk step size used a uniform 

distribution from 0 to a maximal value depending on D and Δt.  A uniform step size model 

was compared to our diffusion model by simulating total time duration of 10-1 s under 

different Δt’s (10-1 s, 10-2 s, 10-3 s and 10-4 s).  For different Δt, the uniform step size model 

produced population distribution that does not coincide with each other (Figure 5-1B, C).  

The difference was especially evident if Δt was large compared to the total simulation 

duration.  Since reactions in Monte Carlo simulations are handled by finding reaction 

probabilities that are highly dependent on distances between reagent molecules, an inaccurate 

spatial distribution of molecules caused by uniform step size model will yield an inaccurately 

simulation of reaction kinetics.   

 

5.3 Basic reaction kinetics verification 

5.3.1 Method 

To test simple reaction kinetics, association and dissociation reactions were simulated using 

parameters that resemble conditions inside cells: biomolecules were homogeneously 

distributed in a spherical volume with a radius of 1 μm; the concentration of biomolecules 

was varied in the range of 100 nM to 10 μM; association rate ka was varied from 104 to 106 

M-1s-1; dissociation rate kd was varied from 1 to 100 s-1.  Lastly, the resulting kinetics curves 

were compared with the deterministic solutions. 
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5.3.2 Results and discussions 

At the different time step durations (Δt), our reaction model accurately simulated simple 

reaction kinetics as the kinetics curves of the simulation coincided with the deterministic 

curves.  For the association reaction defined by akA B C+ ⎯⎯→ , an initial concentration of 

198 μM (or 500 molecules/cell) for both A and B was created in a spherical cell with a radius 

of 1 μm.  The association rate constants ka in the physiological range of 103 – 108 M-1s-1 were 

tested.  Deterministically, the kinetics of this reaction was described by the differential 

equation:  

[ ] [ ][ ]a
d C k A B

dt
=  

Since A and B had the same initial concentration A0, the equation was simplified: 

( )2
0

[ ] [ ]a
d C k A C

dt
= −  

 

The deterministic curve coincided with kinetic curve from the simulation in the ka range of 

103 – 106 M-1s-1 (Figure 5-2A).  Furthermore, within this range, the simulation curves with 

different Δt coincided with the deterministic curves (data not shown).  Notice that at ka above 

107 M-1s-1, the deterministic rate of reaction became faster than the simulated rate as the 

reaction became diffusion limited.  This physical phenomenon occurred in extreme situations 

when reactions happen faster than molecules could diffuse into areas depleted of reagent 

molecules.  This lowered the effective local concentration of the reagents and therefore the 

speed of reaction becomes slower.  This phenomenon of diffusion limited reactions was 
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easily captured by our model, however using a deterministic model, it cannot without 

additional modifications.   

 

 

Figure 5-2: A. Population of reagent molecule as a function of time plotted in log scale for association 

reactions with various rate constant ka ranging from 103 to 108 M-1s-1.  B. Population of reagent molecule 

as a function of time plotted in log scale for dissociation reaction with various rate constant kd ranging 

from 10-1 to 103 s-1.  C. Reversible reaction kinetics showing population of  reagent molecule as a function 

of time plotted in log scale for association reactions with various simulation time step durations Δt=10-6 s 

to 10-3s.  In all the above figures, the simulated kinetics curve (thin black) is compared to the 

deterministic kinetics curve (thick grey).  The Δt is 0.0001s and the total duration is 0.5 second.  D. 

equilibrium constants in ka-kd space matches what is predicted by the deterministic kinetics equations. 

 

For the dissociation reaction defined by ...dkA B C⎯⎯→ + + , the deterministic rate equation 

was [ ] [ ]d
d A k A

dt
= −  with a solution: ( )0[ ] [ ]exp dA A k t= − .  Our simulation kinetic curve 

coincided with the deterministic curves for the entire range of kd (Figure 5-2B).  Again, this 

agreement was independent of Δt of the simulation (data not shown). 
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Reversible reactions were studied by combining the association reaction and the dissociation 

reaction: 

a

d

k

k
A B C+  

At different Δt, the simulated kinetics curves coincided with the deterministic curves and 

reached the same equilibrium points (Figure 5-2C).  To verify this for a broader range of ka 

and kd, 50 reactions with an array of ka and kd values were simulated to equilibrium point.  

The simulated equilibrium concentration of molecule C is compared to what is expected from 

deterministic kinetics. The agreement was well established until reaching ka above 108 M-1s-1 

which was an expected result from diffusion limited reactions (Figure 5-2D).   

 

5.4 The predator-prey model 

5.4.1 Method 

The oscillator was simulated using the following biomolecular reactions with association and 

dissociation parameters that ensured an oscillation would occur: 

1 2akA X X+ ⎯⎯→  ka1=2×105 M-1s-1 

2 2akX Y Y+ ⎯⎯→  ka2= 5×106 M-1s-1, 

dkY D⎯⎯→  kd3=200 s-1 

The total simulation duration was 1 s with a Δt of 0.1 ms.  The diffusion coefficients D of all 

molecular species were varied in the range of 10-10 to 10-12 m2s-1.   
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5.4.2 Results and discussions 

 

Spatial heterogeneity of a molecular specie arising from molecular fluctuations created local 

areas of reaction kinetics that differ from the population.  The predator-prey model was used 

to construct a simple spatial and temporal biomolecular oscillator.  In this model, there was a 

constant source of molecule A that can be converted into molecule X by X at the rate of ka1.  

And similarly, X can be converted into molecule Y by Y at the rate of ka2, which naturally 

decayed into D at the rate of kd.  The below equation described the biomolecular network:  

1

2

2

2

a

a

d

k

k

k

A X X

X Y Y

Y D

+ ⎯⎯→

+ ⎯⎯→

⎯⎯→

 

Deterministically, this was described as follows:  

1 2

2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

a a

a d

dX t k A t X t k X t Y t
dt

dY t k X t Y t k Y t
dt

= −

= −
 

where A(t), X(t), and Y(t) were the concentration over time of A, X, and Y, respectively.  The 

solution to this system of differential equations was a stable oscillation in the concentration 

of A, X and Y with a fixed amplitude (Figure 4-3A, B).  However, using our simulation 

showed that the concentration oscillation amplitude was chaotic (Figure 4-3C,D).  While the 

reaction started with a spatial homogeneity of molecular species, as reactions occurred, it 

created local areas of spatial heterogeneity (Figure 4-3E).  The differences in local 

concentrations caused local differences in the reaction kinetics, resulting in off-phase 

concentration oscillations.  Since the overall oscillation was a superposition of the local 
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oscillations, off-phased local oscillations caused an overall oscillation that was less coherent 

and had varying amplitude peaks. 

 

 

Figure 5-3: Deterministic model solutions of A. phase space predator population vs. prey population, B. 

predator (grey) and prey (black) population over time, C. zoomed in view of the kinetics curves.  Monte 

Carlo simulation solution of D.  phase space predator population vs. prey population, E. predator (grey) 

and prey (black) population over time, F. zoomed in view of the kinetics curves.  G. spatial heterogeneity 
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of the reaction, showing large spatial fluctuation.  Black dots: prey, grey dots: predators.  F. 

demonstration of diffusion coefficient changes the frequency and amplitude of the simulation in phase 

space.  Lower diffusion coefficient (lighter grey) results in curves with greater amplitudes while higher 

diffusion coefficient (darker grey) shifts the curves towards the bottom left corner.  The deterministic 

solution is shown in black. 

 

The effect of spatial heterogeneity was reduced by a larger diffusion coefficient (such as 10-10 

m2s-1) which made the molecular species more homogenous over the course of the simulation.  

Using this diffusion coefficient, the peak amplitude of population oscillation was less varied, 

resembling the oscillatory amplitude of the deterministic solution (Figure 4-3F).  In addition, 

because the amplitude was smaller, the oscillation frequency was higher as it took less time 

to traverse the predator-prey population phase space where the path length was shorter.  In 

contrast, a small diffusion coefficient (10-12 m2s-1) made the molecules less mobile and hence 

kept the molecular species more localized.  Therefore, a large local concentration can be 

achieved, which lowered the oscillation frequency (data not shown).  Hence, the diffusion 

coefficient played an important role in determining biomolecular kinetics. 

 

5.5 Genetic oscillator 

5.5.1 Method  

Genetic circuits for both prokaryotic and eukaryotic cell were constructed using the 

following parameters: inhibitor-DNA complex dissociation constant: 10-7 M, mRNA 

synthesis rate: 500 s-1, protein synthesis rate: 500 s-1, mRNA degradation rate: 50 s-1, protein 

degradation rate: 50 s-1, copy number of plasmid DNA: 50 
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The total simulation duration was 3 s with Δt of 1 ms.  Both the prokaryotic and eukaryotic 

cell had a spherical volume with a radius of 2 μm.  In the case of the eukaryotic cell, it had a 

spherical nucleus with a radius of 0.75 μm, which contained the DNA.   

 

5.5.2 Results and discussions 

The spatial localization of molecules into cellular compartments changed the amplitude or 

phase of the genetic oscillator.  To study the effect of molecular localization in compartments, 

a prokaryotic genetic oscillator was compared to a eukaryotic genetic oscillator.  In our 

prokaryotic oscillator, mRNA was transcribed and translated into proteins in the cytoplasm.  

These translated protein then regulated gene expression by interacting with genetic material 

in the cytoplasm.  Conversely, in our eukaryotic oscillator, mRNA was transcribed inside the 

nucleus and then transported outside the nucleus where mRNA was translated into proteins.  

For these translated protein to regulate gene expression, they were transported back into the 

nucleus.  Since transcription and translation were relatively slow reactions, low reaction rate 

constants were used.  Thus, any biomolecular species had sufficient time to reach spatial 

homogeneity within its own compartment before the reaction kinetics changes significantly. 

 

The genetic network was constructed to produce oscillating concentration of three different 

species of proteins each with a phase shift as previously described (Figure 5-4C). [23] The 

network was composed of three repressor proteins (tetR, lacI and λcI) forming a cyclic 

negative feedback loop - each inhibiting the expression of one other repressor (See Figure 

5-4C).  The repressor protein and mRNAs were constantly degraded by intracellular 

proteases and RNase.  For instance, if the expression of tetR was inhibited, tetR protein 
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concentration decreased.  This decrease released the repression of λcI, causing the 

concentration of λcI to increase.  This cycle propagated and repeated to create an oscillation 

in the concentration of each of the repressor proteins with the same delay from each other.  

Transcription, translation and degradation (of both protein and mRNA) were modeled in our 

simulation as simple first order reactions as the detailed stages in these processes were too 

complex to be modeled precisely.  For comparison purposes, the synthesis and degradation 

rates of RNA and protein were the same for both prokaryotic and eukaryotic cells.  The 

binding between the regulatory regions of the plasmid DNA and the three repressor proteins 

were modeled as reversible reactions with the same dissociation constants in both systems. 

 

In the simulation of the prokaryotic case, the three repressor proteins oscillated with 2π/3 

phase difference as expected due to the symmetry of the system (Figure 5-4A), while the 

oscillation characteristics of the eukaryotic were dependent on the transport of biomolecules 

across the nuclear membrane.  As expected in the prokaryotic oscillator, the molecular 

fluctuation caused the variations in both the amplitude and phase of the oscillations similar to 

the predator-prey model.  In the eukaryotic oscillator, the periodic oscillation pattern was no 

longer present in the simulation when using the same set of initial conditions (Figure 5-4B).  

This was due to insufficient transport of mRNA and proteins across the nuclear membrane.  

The statistical fluctuation of the nuclear import and export rate in combination with the phase 

delay caused by the nuclear transport destroyed the synchrony between the protein 

expression and gene repression.  This caused the concentration oscillation of the three 

repressor proteins to be off from the 2π/3 phase and hence the chaotic fluctuation (Figure 

5-4B).  When the rate of nuclear transport was sufficiently high, the oscillation returned 
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because the phase delay became negligible between the cytoplasmic and the nuclear 

concentration. 

 

 

Figure 5-4: A, the plasmid schematic of a genetic oscillator.  Regions with arrows were repressor binding 

regions of the plasmid DNA.  Regions marked with λcI, TetR and LacI are the genes regulated by their 

respective repressor binding regions.  B, the population changes of the three repressor proteins in the 

prokaryotic model.  C, D, the population oscillations of the three repressor proteins in the eukaryotic 

model with C, low nuclear membrane transport rates of 5×103 s-1 and D, high nuclear membrane 

transport rate of 5×105 s-1.  Dotted lines represented λcI; solid black, TetR; solid grey, LacI. 

 

5.6 Ca2+ wave 

5.6.1 Method 

A cylindrical compartment with a radius of 0.1 μm and a length of 10 μm was constructed.  

The membrane of the compartment was embedded with Ca2+-dependent calcium channels 

(CDCC) at a range of concentrations.  These CDCCs bind to outside Ca2+ which opens the 
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channel, releasing Ca2+ inside the compartment.  The flux of Ca2+ depends on the 

concentration gradient across the membrane, similar to the IP3 receptor proteins on the 

surface of endoplasmic reticulum (ER).  In our simulation, the Ca2+ concentration inside the 

compartment was much higher than outside, hence, when Ca2+ induced the initial release of 

Ca2+, these Ca2+ ions would bind to more CDCCs and release more Ca2+ in a positive 

feedback loop.  The Ca2+ concentration inside the compartment was similar to the 

physiological values inside ER ~500 μM. 

 

5.6.2 Results and discussions 

Our simulations showed that the kinetics of Ca2+ wave propagation depended on the density 

and geometric arrangement of the Ca2+ channels.  Through the highly regulated events of 

intracellular Ca2+ homeostasis, often seen as a Ca2+ wave, Ca2+ regulates numerous 

physiological cellular phenomena including development, differentiation and apoptosis.  

When triggered by other secondary messengers such as IP3 (inositol-1,4,5-triphosphate), Ca2+ 

is released from the ER to the cytoplasm by the channels such as the IP3 receptor.  To 

simulate a Ca2+ wave, we modeled the Ca2+-induced-Ca2+-release mechanism, where the 

membrane Ca2+ channels were opened when they bound to Ca2+ from the outside.  A cylinder 

representing the ER was lined with Ca2+ channels and filled with Ca2+.  Hence, when a dose 

of Ca2+ was added to one end of the cylinder, the edge of the Ca2+ diffusion triggered the 

adjacent channel to release Ca2+, reinforcing the Ca2+ wave propagation in that direction 

(Figure 5-5). 
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Figure 5-5: The spatial propagation of the Ca2+ ions in time.  Top-left corner shows the triggering event 

at t=0 ms.  The ion propagation to the right can be seen moving much faster than diffusion, hence the ion 

distribution profile is elongated in the horizontal direction. 

 

The surface density of Ca2+ channels as well as their Ca2+ transport rate affected the speed of 

wave propagation.  In these simulations, the Ca2+ channel release rate was in the same order 

as Ca2+ diffusion.  If the binding and channel opening events were slower than Ca2+ diffusion, 

the speed of Ca2+ wave was dominated by diffusion, resulting in a wave propagation less 

guided by the cylinder (Figure 5-6C).  Conversely, if the binding and channeling opening 

were faster than Ca2+ diffusion, the wave propagation speed was faster than diffusion (Figure 

5-6A, B).  The Ca2+ channel density also played a very vital role to the propagation of the 

Ca2+.  In the case with 1000 channels on the membrane, there were sufficient channels on the 

membrane to maintain a high Ca2+ release rate of ~ 420 ions/ms until 14 ms (Figure 5-6D, E).  

At 14 ms, the Ca2+ release rate decreased to 0 as the propagation reached the end of the 

cylindrical compartment.  Multiple runs of the same simulation showed that the propagation 

rate and the duration of propagations are consistent (Figure 5-6D, E).  In contrast, in the case 
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with only 100 channels on the membrane, the propagation along the cylindrical chamber took 

over twice as long as in the case of 1000 membrane channels for an average of 32ms  (Figure 

5-6F).  Additionally, the Ca2+ release rate is no longer uniform throughout the propagation 

(Figure 5-6G) and is inconsistent among simulations with same setup parameters (Figure 

5-6F, G).  This is due to decreased uniformity of membrane channels along the axial 

direction as the number of membrane channels is lowered.  In a situation with non-uniform 

distribution of membrane channels, the regions with higher channel density has a faster 

propagation rate and vice versa.  For instance, the simulation shown as black curves in Figure 

5-6F, G had a faster Ca2+ release and consequently faster propagation rate till 15ms after the 

propagation started.  The propagation then slowed down due to sparser channels in the 

middle section of the cylinder. 
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Figure 5-6: Graphical representation of the Ca2+ distribution after 10 ms for experiments with different 

channel binding/opening rate: A, 108 M-1s-1, B, 107 M-1s-1, and C, 106 M-1s-1.  D, the Ca2+ population 

outside the compartment over time for 1000 membrane channels.  E, Ca2+ release rate over time for 1000 

membrane channels   F, the Ca2+ population outside the compartment over time for 100 membrane 

channels.  G, Ca2+ release rate over time for 100 membrane channels.  Black, dark grey and light grey 

lines in each figure (D, E, F, G) are three simulations using the same setup parameters. 
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5.7 A protein reaction network that implements a D-latch memory 

element 

5.7.1 Method 

The association rate constant of maltose to Ndata (MBP*) and Nclock (MBP) were 108 and 109 

M-1s-1, respectively. The dissociation rate constant of maltose from both MBP* and MBP 

were 103 s-1.  All protein-protein interaction had an association rate constant of 106 M-1s-1 and 

a dissociation rate constant of 100 s-1.  The association and dissociation rate constants of Q 

and P to Noutput2 and Noutput1 were 108 M-1s-1 and 5×103 s-1.  The catalytic rate of Q and P 

creation was 5×104 s-1, while the degradation rate of Q and P was 1.6×104 s-1. 

 

5.7.2 Results and discussions 

Using synthetic proteins composed of WW domains, maltose binding protein (MBP), 

calmodulin, adenylate cyclase, guanylate cyclase, cAMP binding domain from protein kinase 

A (PKA), and cGMP binding domain from protein kinase G (PKG), a biomolecular reaction 

network was simulated that behaved similar to a digital memory element (i.e D-latch), 

showing that a network of proteins can remember state (Figure 5-7A).  D-latches are simple 

digital memory units that synchronize the setting of a data bit (value that can be 0 or 1) to a 

clock signal (also can be 0 or 1).  When the clock is 1, the D-latch maintains the previously 

set value; when the clock is 0, the D-latch output is changed to the input D.  D-latches are 

often incorporated in digital systems to remember the state of a machine and the machine 
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responds specifically to inputs depending on its state.  Similarly, cells have the notion of a 

state as it responds differently to the same stimuli such as in stem cell differentiation.  We 

showed that a network of proteins with particular interactions can create a D-latch and 

therefore a protein network can be used to encode states.  Since a D-latch is made 

fundamentally by switches in a particular configuration, proteins engineered to perform 

switching can theoretically create similar memory units.  A synthetic binding or catalytic 

protein can be engineered to have two regulatory sites, where each site serves as an input 

signal and the binding or catalytic activity of the protein serves as the output signal.  

Furthermore, this protein can be engineered such that as long as one site is occupied 

(representing a 1 input), the binding activity is inhibited (representing a 0 output).  This 

switching behaviour is known as a NOR logic gate.  From digital logic theory, we can create 

a D-latch using 4 NOR logic gates (Figure 5-7A). 

 

Engineering protein logic gate is inspired by how natural proteins perform switching and 

logic functions.  For example, the protein calmodulin (CaM) acts like a Ca2+ regulated switch 

as it undergoes conformational change upon Ca2+ binding and is then able to bind to other 

proteins. [97, 98]  Artificial protein switches has also been constructed in the past by 

combining two functional distinct proteins such as the β-lactamase (BLA) and maltose-

binding protein (MBP), where MBP controls the activity of BLA when triggered by maltose 

sugar. [99-101]  Similarly, protein logic gates can be implemented by combining two 

switching mechanisms arranged in the fashion to provide the desirable logic function. 
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As signals of our synthetic protein network, we designate 0 as the absence or inactivity and 1 

as the presence or activity of any biomolecular specie or protein.  The input signal D and 

Clock are chosen as small molecules because their absence or presence could be 

experimentally controlled more easily.  A synthetic protein can be engineering using a 

binding protein with two regulatory sites where each site serves as an input signal and the 

binding activity of the protein serves as the output signal.  Furthermore, this protein can be 

engineered such that as long as one site is occupied, the binding activity is turned off.  This 

switching behaviour is known as a NOR logic gate.  From digital logic theory, we can create 

a D-latch using 4 NOR logic gates (Figure 5-7A).  The nature of the protein logic gate is 

decided by the mode of interaction among the binding sites and the protein itself.  For 

instance, a protein NAND gate requires both binding partners to be present for the protein to 

be inactive, where as for a protein NOR gate, as long as one binding site is occupied, the 

protein’s activity is turned off.  This implies that constructing certain protein logic gates such 

as the NOR gate would be considerably easier than a NAND gate.  Hence, the D-latch was 

modified to a clock-inverted version, thereby replacing the 4 NAND gates in the circuit with 

4 NOR gates 

 

Specifically, Ca2+ and maltose were chosen as inputs to Data and Clock, respectively.  Their 

concentration can be controlled in vitro by directly addition and dialysis.  Choosing signaling 

molecules with different size and charge allows independent control of the input signaling 

molecules by selective dialysis.  The output of the two NOR gates, Ndata and Nclock, were the 

binding activity of the WW1 and WW2 domain, respectively (Figure 5-7).  The synthetic 

protein Ndata can be engineered by fusing WW1 domain with both CaM and MBP such that 
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when either Ca2+ or maltose is present, the activity of Ndata is inhibited (Figure 5-7).  

Similarly, Nclock was created using WBP1 (a binding partner for WW1) and MBP to receive 

input that inhibits the function of WW2 (Figure 5-7B).  Since Ndata had two inhibitory sites 

responding to input signals whereas Nclock only had one, when both Ca2+ and maltose signals 

were present, Ndata was inhibited much higher than Nclock.  To correct for the imbalance, a 

lower affinity MBP* was used on Ndata.  The output of memory module Noutput1 and Noutput2 

were the activities of adenylate cyclase (AC) and guanylate cyclase (GC) that produced 

cAMP and cGMP, which are constantly degraded by background phosophodiesterases.  The 

synthetic protein Noutput1 and Noutput2 were also designed with cGMP and cAMP binding 

domains from protein kinase G (PKG) and protein kinase A (PKA) such that when bind to 

cGMP and cAMP, they would inhibit the catalytic activity of Noutput1 and Noutput2, respectively 

(Figure 5-7).  Thus, in any steady equilibrium state, either Noutput2 or Noutput1 is active but not 

both.  Furthermore, Noutput1 and Noutput2 were connected to the logic module by the activity of 

Ndata and Nclock, respectively.  When Ndata or Nclock was active, its WW1 or WW2 domain 

bound and inhibited Noutput1 or Noutput1, respectively.   This can be described by the following 

biomolecular reactions (Figure 5-7): 

 
Ndata + Noutput1 inactive_Noutput1 

Nclock + Noutput2 inactive_Noutput2 

P + Noutput1  inactive_Noutput1 

Q + Noutput2  inactive_ Noutput2 

Noutput2  Noutput2+P 

Noutput1  Noutput1+Q 

P degraded 

Q degraded 
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Figure 5-7: A.  A clock inverted D-latch in electronics representation, the four NOR gates are names Ndata, 

Nclock, Noutput1, and Noutput2.  B. Protein circuit implementation of the D-latch.  C. the timing diagram of 

electronic D-latch in comparison with protein D-latch.  Grey lines indicate the response expected for 

digital circuit, black lines are the response from the protein circuit. 

 

To achieve significant bi-state behavior, the population of cGMP and cAMP generated in 

either state should greatly exceed the population of Noutput2 and Noutput1 when a state is 

maintained.  The large population of cGMP and cAMP ensures the stability of the memory 

state.  On one hand, we need to maintain the state of this memory module, on the other hand, 

we must be able to switch it to the opposite state when needed.  For instance, if we want to 

switch from Noutput1 active to Noutput2 active, we must ensure that when the switching signal is 

triggered, active population of Noutput1 must be brought down below the population of Noutput2.  

This requires the dissociation constant between the Ndata and Noutput1 be sufficiently low such 

that Ndata is able to deactivate more Noutput1 than cGMP could inhibit Noutput2. 

 

We optimized the protein circuit by tweaking the kinetic parameters.  It was found that when 

the binding on/off rates in protein-protein (Ndata, Nclock, Noutput2, Noutput1) interactions is much 

lower than in protein-signaling-molecule (Ca2+, maltose, cGMP, cAMP) interactions, the 

system shows higher signal-to-noise ratio.  We reasoned this is because when the interaction 

between signaling molecules with proteins are weak, a large population of signaling 

molecules is required, which would have a relatively smaller statistical variation.  

Consequently, the binding affinity between protein and small molecules would be much 

smaller than between protein and protein.  This ensures the stability of the circuit as the 

effect of signaling molecule fluctuations is buffered by the tight interactions between proteins.  

Due to the symmetry of the memory module, the binding affinity between Noutput1, Noutput2 
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and their substrates should be as close as possible.  A large difference in binding affinity 

results in a preferential (biased) state in the memory module, which makes state flipping 

difficult and the system is prone to flipping state by itself.  Lastly, the stoichiometry of the 4 

proteins in the network must be precisely 2:1:1:1 (Ndata:Nclock:Noutput1:Noutput2) to ensure the 

correct signal levels in the circuit.  Insufficient input level would make it difficult and 

sometimes impossible to flip the state of the memory module due to the activities of residual 

protein species.   

 

After fine tuning the kinetics parameters and stoichiometry, our protein network functions 

like a D-latch (Figure 5-7C, D).  The concentration of the maltose and Ca2+ were controlled, 

while the changes in concentration of Noutput2 and Noutput1 were tracked over time.  When the 

maltose concentration (representing the Clock) was set to low, the adenylate cyclase activity 

followed the concentration of Ca2+ (representing D).  When the maltose concentration was 

high, both the adenylate cyclase and guanylate cyclase activity maintained previous levels 

despite the changes in Ca2+ concentration.  The unevenness of the output was due to 

molecular fluctuations as there were only 500 molecules of Noutput1 and Noutput2 in the 

simulation. 
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Chapter 6  

 

Conclusion 
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Systems biology and synthetic biology demand quantitative methods to study biomolecular 

systems and networks.  A survey in these fields was conducted showing the importance and 

necessity to create an accurate simulation tool to study biomolecular networks.  Here, we 

described the creation of a computational tool using a Monte Carlo approach for simulating 

the spatial and temporal kinetics of biomolecular reaction networks within a cell.  Since our 

models were based on physical principles, the tool accurately produced diffusion and 

reaction constants across a range of time step durations.  Simulations on a predator-prey 

model demonstrated the phenomenon of spatial heterogeneity and its effect on the frequency 

and amplitude of the oscillation.  Subsequent simulations on prokaryotic and eukaryotic 

genetic oscillators demonstrated transport of proteins and mRNA across a nuclear 

compartment disturbs the oscillation.  In fast reactions such as Ca2+ waves, density and 

geometric arrangement of the Ca2+ channels affect the speed of Ca2+ wave propagation.  

Lastly, using known activities of protein domains, we constructed a synthetic protein reaction 

network that functioned like a digital memory element, showing that biomolecular networks 

are capable of remember states and changing its behaviour depending state.  Together this 

work demonstrates the unique insights that can be discovered by considering the subtle 

effects that can be created by the spatial and temporal kinetics of biomolecular reaction 

networks.  Future applications of the computational tool include designing synthetic 

networks or modeling larger existing biological networks. 
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6.1 Ongoing projects and future work 

Currently, we are exploring various ways to construct protein circuits analogous to electronic 

circuit components such as logic gates, latches and flip-flops.  These will provide the 

necessary modules for constructing more complex interacting networks.  Methods to 

interconnect various modules using signaling molecules or interacting protein domains are 

also being developed. 

 

In addition, we are investigating in the cross-talk between biomolecular networks.  Signaling 

in biological systems is not as specific as in electrical systems, where each wire connects the 

input to the output.  For instance, protein kinases usually have more than one 

phosphorylation targets due to the non-specific interactions between the kinase and the 

substrates.  As there are many kinases in the system, there are inevitably many cross-talking 

between different phosphorylation pathways.  We want to study how this cross-talking 

between networks changes the behaviour of each network and the behaviour of the overall 

system. 

 

 
Lastly, to make the software package more user-friendly, a graphical user interface (GUI) is 

being developed to replace manually writing the setup script files.  An additional feature 

would be to plot the kinetics data as the program runs such that adjustments to the reaction 

parameters can be made earlier, making it more efficient to use. 
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Molecule information setup 
 

static int N_species; number of species 

 

static int* mol_total; number of molecule per 

specie 

 

static bool** mol_alive_new; active flag of each 

molecule in the new time 

step 

 

static bool** mol_alive; active flag of each 

molecule in the current 

time step 

 

static int* mol_totalAlive_new; number of active molecule 

per specie in the new time 

step 

 

static int* mol_totalAlive;  number of active molecule 

per specie in the current 

time step 

 

static double*** mol_pos; position of molecule 

 

static double* mol_mass; mass of molecule 

 

static double* mol_size; diameter of molecule 

 

static double* mol_diffConst; diffusion coefficient 
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static char** mol_name; name of molecule 

 

static int* mol_region; valid region the molecule 

can diffuse in 

 

Environment setup 
 

static double temperature; initial temperature 

 

static double viscosity; viscosity of solution 

 

static double pH; initial pH 

Reaction setup 
 

static int N_reactions; number of reactions 

 

static int N_fwd; number of association 

reactions 

 

static int N_rev; number of dissociation 

reactions 

 

static int N_rxnID_fwd; number of association 

reaction constructs 

 

static int N_rxnID_rev; number of dissociation 

reaction constructs 

 

static int fwd_max_rxn; max number of association 

reaction per reagent 
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static int rev_max_mol; max number of dissociation 

reaction per reagent 

 

struct ForwardReaction  

{ 

 int reagent; 

 int partner; 

 int product; 

 double kf; 

}; 

ForwardReaction* p_fwd; 

int*** ppp_fwd_hash;  

 

struct ReverseReaction 

{ 

 int reagent; 

 double kr; 

 int num_prod; 

 int* product; 

};       

ReverseReaction* p_rev;  

int** pp_rev_hash;   

 

static double** V0_v; effective volume 

 

 

Simulation setup 
 

static int total_step; total step of simulation 

static int current_step; current step index 
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static double time_step; step length in time 

 

 

Check data structure initiation 
 

static bool data_init_success=false; whether data structure 

initiation is 

successful 
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Appendix B 

 

Function definitions 
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dataFetcher.h 

Interface between the data structure and the function calls in the program. 
 
//allocates memory 

void initDataStructure_fromFile(char* filename);  

 

//clears memory must pair with initDataStructure_fromFile 

void deleteDataStructure(); 

 

//using SQL database, not implemented 

void initDataStructure_fromSQL(); 

bool data_initialization_success(); 

 

//storing data 

void snapshotSetup_toFile(char* filename); 

void snapshotMol_toFile(char* filename); 

void snapshotRxn_toFile(char* filename); 

void output_to_SQL(); 

 

//movie reconstruction 

void createMovie_toFile(char* movie_filename, int stepNumber); 

void readMovie_fromFile(char* movie_filename, fpos_t* 

filePosition);   

 

//data output 

void createData_toFile(char* data_filename, int stepNumber); 

 

//new time step handling 

void copy_current_new(); 

 

//replacing the new time step with the current 
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void swap_current_new(); 

 

//check if a particular molecule is active in new step 

bool alive_new(int speciesID, int index);    

 

//set status of the molecule in new step 

void setAlive_new(int speciesID, int index, bool fate); 

 

//active population in new step 

int alivePopulation_new(int speciesID);     

 

//find the index of the first inactive molecule 

int findFirstDeadIndex_new(int specieID); 

 

//molecule information 

int numSpecies(); 

int speciePopulation(int speciesID); 

bool alive(int speciesID, int index);    

void setAlive(int speciesID, int index, bool fate); 

int alivePopulation(int speciesID);     

int totalAlivePopulation(); 

void position(int speciesID, int index, double* x, double* y, 

double* z); 

void setPosition(int speciesID, int index, double x, double y, 

double z); 

double mass(int speciesID); 

double size(int speciesID); 

double diffConst(int speciesID); 

void name(int speciesID, char* output); 

int specieRegion(int specieID); 

int findFirstDeadIndex(int specieID); 

int findFirstAliveIndex(int specieID); 
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//environment information 

double readTemperature(); 

void setTemperature(double T); 

double readViscosity(); 

void setViscosity(double v); 

double readPH(); 

void setPH(double p); 

 

//reaction info, FR-forward reaction, RR-reverse reaction 

int totalRxn(); 

int totalRxn_F(); 

int totalRxn_R(); 

int numRxn_F(int specie1, int specie2); 

int numRxn_R(int specie);  

int totalrxnID_F(); 

int totalrxnID_R(); 

rxnID rxnID_F(int specie1, int specie2, int pick); 

rxnID rxnID_R(int specie, int pick); 

double kf(rxnID id); 

double kr(rxnID id); 

int numProd_R(rxnID id); 

int partnerID_F(rxnID id); 

int productID_F(rxnID id); 

void productID_R(rxnID id, int* products, int N); 

double V0(int specie1, int specie2); 

 

//simulation information 

int totalStep(); 

int readCurrentStep(); 

void setCurrentStep(int scs); 

double dt(); 
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//error handling 

void errorOut(char* message); 

 

//distance 

double dist2Mol(int specieID1, int index1, int specieID2, int 

index2); 

double dist2Mol2(int specieID1, int index1, int specieID2, int 

index2); 

double dist3D(double x1,double y1,double z1,double x2,double 

y2,double z2); 

double dist3D2(double x1,double y1,double z1,double x2,double 

y2,double z2); 

bool withinDist(int specieID1, int index1, int specieID2, int 

index2, double dist); 

 

 

diffusion.h 

Handles molecule diffusion in the correct regions 

 
//this function takes pointer to values x,y,z and change their 

values based on D and t using dPDF 

void diffuse(double* x,double* y,double* z,double time,double 

D,int region); 

 

//diffuse all molecules 

void diffuseAll(); 

 

//these functions set the upper bound of the range of 

molecules that can react (2x half max half width) 

double max_diffusion_radius2(double D, double time); 
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double max_diffusion_radius(double D, double time); 

 

 

experiment.h 

Handles adding and removing molecules in different time steps 
 

//initializing experiment information 

void initExperiment_fromFile(char* filename); 

bool exp_initialization_success(); 

 

//reprinting experiment information 

void snapshotExperiment_toFile(char* filename); 

 

//perform experiment 

void experiment(int ts); 

 

geometry.h 

Initialize molecule positions and check for boundary conditions 
 

//parse boundary/region information from file to region data 

structure. 

void initGeometry_fromFile(char* filename); 

bool geo_initialization_success(); 

 

//reprinting experiment information 

void snapshotGeometry_toFile(char* filename); 

 

//check if point is in geometric shapes 

bool inBox(double cx, double cy, double cz, double wx, double 

wy, double wz,  double x, double y, double z); 
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bool inBoxShell(double cx, double cy, double cz, double wx1, 

double wy1, double wz1,  double wx2, double 

wy2, double wz2, double x, double y, double z); 

bool inSphere(double cx, double cy, double cz, double radius, 

double x, double y, double z); 

bool inSphereShell(double cx, double cy, double cz, double r1, 

double r2, double x, double y, double z); 

bool inCylinder(double cx, double cy, double cz, double r, 

double l, double x, double y, double z); 

bool inCylinderShell(double cx, double cy, double cz, double 

r1, double r2, double l, double x, double 

y, double z); 

 

 

//returns what region is (x,y,z) in 

bool inRegion(double x, double y, double z, int regionID); 

 

//create a point (x,y,z) in a specified region 

void createToRegion(int regionID, double* x, double* y, 

double* z); 

 

 

inverse3DGaussian.h 

Numerical function for inverse 3D Gaussian function 

 
//loads the inverse 3DGaussian function data from file 

bool init_inverse_3DGaussian(); 

 

//this function takes input from 0 to 1 

double inverse_3DGaussian(double x); 
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randomNumber.h 

Handles all random number generation in the simulation 

 
//basic random number generator 

void initRand(); 

double random_number(double lower, double upper);  

int random_integer(int lower, int upper);   

 

//3D isotropic density radius distribution function 

double random_radius_3Dgaussian(double D, double time); 

double random_radius_3Dhomogeneous(double lower, double upper); 

 

//2D isotropic density radius distribution 

double random_radius_2Dhomogeneous(double lower, double upper); 

 

//3D isotropic spherical angles 

double random_angle_phi(); 

double random_angle_theta(); 

 

//randomize molecule order 

void randomize_MO(); 

int length_MO(); 

 

//read Molecule Order 

void read_MO(int n, int* specie, int* ID);  

//clear the memory allocated for MO 

void delete_MO();        

 

//randomize reaction order 

void randomize_RO(int specie); 

int length_RO(); 
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//read reaction order 

void read_RO(int ro_index, bool* isFwdRxn, rxnID* id); 

void delete_RO(); 

 

//random position generators 

void randBox_BBB(double x1, double y1, double z1, double x2, 

double y2, double z2, double* x, double* y, 

double* z); 

void randBox_CW(double cx, double cy, double cz, double wx, 

double wy, double wz,  double* x, double* y, 

double* z); 

void randBoxShell_CWW(double cx, double cy, double cz, double 

wx1, double wy1, double wz1,  double 

wx2, double wy2, double wz2, double* x, 

double* y, double* z); 

void randSphere(double cx, double cy, double cz, double radius, 

double* x, double* y, double* z);   

void randSphereShell(double cx, double cy, double cz, double 

r1, double r2, double* x, double* y, 

double* z); 

void randCylinder(double cx, double cy, double cz, double r, 

double l, double* x, double* y, double* z);

   

void randCylinderShell(double cx, double cy, double cz, double 

r1, double r2, double l, double* x, 

double* y, double* z); 

 

 

reaction.h 

Calculates the reaction probabilities 
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//reaction probability between two molecules 

double rxnProbablity(int specieID1, int specieID2,  rxnID r, 

double l); 

 

//association reaction probability 

bool reactFWD(int specie1, int index1, int specie2, int index2, 

rxnID r); 

 

//dissociation reaction probability 

bool reactREV(int specie, int index, rxnID r); 

 

//decides the reaction for all molecules in the volume 

void reactAll(); 
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Appendix C 

 

Main function structure 
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The main function handles the flow of the program and the data I/O. 
 
//loading the libraries 

#include <stdio.h> 

#include <stdlib.h> 

#include <time.h> 

#include <string.h> 

 

#include "dataFetcher.h" 

#include "diffusion.h" 

#include "experiment.h" 

#include "geometry.h" 

#include "inverse3DGaussian.h" 

#include "reaction.h" 

#include "randomNumber.h" 

 

//local function definition 

void displayTimeLapse(); 

 

/*expected input format: 

 MCR.exe setup experiment geometry -m movie -d data 

 MCR.exe setup experiment geometry -m movie 

 MCR.exe setup experiment geometry -d data 

*/ 

 

//main program starts 

int main(int argc, char **argv) 

{ 

//checking input parameters and ready for file inputs 

printf("\n\nTrying to understand what you want to do..."); 

... 
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... 

errorOut("movie filename exist! Change movie filename!"); 

  

//data base initialization 

initRand(); 

... 

... 

//snapshotRxn_toFile("a"); 

   

//simulation starts here, going through all steps 

sequentially 

for(int i=0;i<totalStep();i++) 

{ 

 //set the current time step index 

setCurrentStep(i); 

 

//changing reaction conditions: init/add molecules, 

change temperature etc... 

 experiment(readCurrentStep()); 

 

//diffuse the molecules  

 diffuseAll(); 

 

//this react puts all info into the "new" 

mol_alive_new, mol_totalAlive_new, the old mol_alive, 

mol_totalAlive are unchanged.      

 reactAll(); 

 

//create movie 

if(outputMovie) 

  createMovie_toFile(nameMovie,i);  
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//create datafile 

 if(outputData) 

  createData_toFile(nameData,i);   

  

} 

 

//clear memory data structure 

deleteDataStructure(); 

 

//display the time took for simulation to complete 

displayTimeLapse(); 

 

return 0; 

} 


